#Granada El IAA encabezará dos de los cinco estudios más avanzados sobre agujeros negros supermasivos de 2018

Agujero Negro Fuente: ESO
Agujero Negro Fuente: ESO

 

Los agujeros negros son uno de los objetos más fascinantes del cosmos: concentraciones de materia con una fuerza gravitatoria tan intensa que ni la luz puede escapar. El Telescopio del Horizonte de Sucesos (EHT) busca observar directamente su entorno inmediato, una región denominada horizonte de sucesos a partir de la que la luz sí escapa (y a partir de la que podemos obtener información), empresa a la que se ha sumado el observatorio ALMA y en cuyo marco se han seleccionado cinco proyectos para 2018, dos de ellos encabezados por el Instituto de Astrofísica de Andalucía (IAA-CSIC).

El Telescopio del Horizonte de Sucesos (EHT, de su nombre en inglés) es en realidad un telescopio virtual: se trata de un conjunto de antenas distribuidas por todo el mundo cuya señal se combina, de modo que funcionan como un telescopio con un diámetro equivalente a la distancia máxima entre antenas. En 2017 el observatorio ALMA sumaba sus sesenta y seis antenas al EHT, lo que aportaba al proyecto su enorme superficie colectora, de más de siete mil metros cuadrados.

Los agujeros negros que estudiarán EHT y ALMA generan los entornos más extremos que se conocen en el universo, lo que se conoce como núcleos activos de galaxias. Se trata de agujeros negros supermasivos, con hasta varios miles de millones de veces la masa del Sol, que se hallan rodeados de un disco de material que los alimenta (el disco de acrecimiento) y pueden liberar de forma continua más de cien veces la energía de todas las estrellas de una galaxia como la nuestra. Además, suelen mostrar chorros de partículas perpendiculares al disco que viajan a velocidades cercanas a la de la luz y se extienden más allá de la propia galaxia.

Los agujeros negros supermasivos desempeñan un papel fundamental en la formación y evolución de las galaxias (la mayoría de ellas, incluida la Vía Láctea, alberga uno), y constituyen un entorno único para el estudio de la gravedad en ambientes extremos. Así, el Telescopio del Horizonte de Sucesos espera, por ejemplo, poner a prueba la Teoría General de la Relatividad de Einstein, que predice la existencia de una “sombra” más o menos circular en torno al agujero negro, entender el fenómeno de la absorción de material alrededor de los agujeros negros o el mecanismo de formación de los chorros.

 

OJ287. EL MEJOR CANDIDATO A AGUJERO NEGRO SUPERMASIVO BINARIO

En septiembre de 2007 se cumplía una predicción emocionante. OJ287, un agujero negro supermasivo con unos dieciocho mil millones de masas solares (uno de los mayores conocidos), experimentaba un esperado destello, que seguía una tendencia registrada desde 1890 y que se halla salpicada de estallidos dobles cada doce años, aproximadamente.

La predicción se realizó considerando un modelo que propone que OJ287 es en realidad un agujero negro supermasivo binario. Según este modelo, otro agujero negro -unas cien veces menor- gira en torno a OJ287 y regularmente atraviesa su disco de acrecimiento, calentándolo y liberando burbujas de material que generan los destellos.

El acierto en la predicción, que contempla la pérdida de energía del sistema a través de ondas gravitatorias, afianzó el modelo de agujero negro binario (en el que, además, el menor iría cayendo sobre OJ287 hasta fusionarse con él en un intervalo de unos diez mil años), pero hace falta observar la región más interna del objeto para comprobarlo.

Uno de los cinco proyectos aceptados para la observación con el Telescopio del Horizonte de Sucesos y ALMA en 2018 busca, precisamente, comprobar si OJ287 es en efecto un agujero negro doble.  “Esperamos que estas observaciones nos permitan poner a prueba la teoría de la relatividad de Einstein en uno de los escenarios más extremos que nos podemos encontrar en el universo: un sistema binario de agujeros negros supermasivos destinados a fusionarse en uno solo. De confirmarse este escenario estaríamos ante un sistema capaz de emitir las ondas gravitacionales más intensas del universo”, apunta José Luis Gómez, investigador del Instituto de Astrofísica de Andalucía (IAA-CSIC) que encabeza el proyecto.

En primavera de 2018 gran parte de las grandes instalaciones de observación del mundo apuntarán a este objeto. Las grandes redes de antenas internacionales, tanto en tierra como en el espacio, tienen observaciones programadas y se espera obtener una imagen con una resolución de unos diez microsegundos de arco (visto desde la Tierra, estos diez microsegundos de arco corresponderían al tamaño de una moneda de un euro en la superficie de la Luna).

“Estas observaciones nos permitirán entender mejor cómo se forman los chorros relativistas, o poner a prueba el denominado teorema de no pelo de los agujeros negros, que afirma que toda la información sobre la materia que forma el agujero negro o que cae sobre él desaparece tras el horizonte de sucesos y permanece inaccesible; así, los agujeros negros se caracterizarían únicamente por su carga, masa, y momento angular”, señala Gómez (IAA-CSIC).

4C+01.28. CLAVE PARA ENTENDER CÓMO SE FORMAN LOS CHORROS

Cuando comenzaron a estudiarse las galaxias activas, en los años sesenta del siglo pasado, se acuñó el término cuásar, abreviatura de quasi-stellar radio sources (fuentes de radio cuasi estelares) para aludir a estos objetos puntuales, extremadamente lejanos y brillantes que, según sabemos hoy, responden a la existencia de un agujero negro supermasivo en un núcleo galáctico.

Sin embargo, años después hubo que acuñar un término para algunos que eran aún más brillantes. Se trata de los blázares (del inglés blazing quasi-stellar objetc, u objeto cuasi estelar resplandeciente), que muestran un brillo muy superior debido a que vemos el disco de frente y el chorro de partículas apunta en nuestra dirección.

4C+01.28, uno de los objetivos de la campaña de observación con el Telescopio del Horizonte de Sucesos para 2018, es un blázar que presenta una peculiaridad. “El chorro de 4C+01.28 muestra una doble estructura: una región interna, con el campo magnético alineado en una dirección, y otra externa -una especie de vaina-, con el campo alineado en la dirección  perpendicular a la anterior, alineada con la dirección del chorro relativista”, señala Antxon Alberdi, investigador del Instituto de Astrofísica de Andalucía (IAA-CSIC) que coordina el proyecto.

El estudio en detalle de este blázar permitirá discriminar entre los dos modelos que intentan explicar cómo se forman los chorros en las galaxias activas. Uno plantea que el chorro emerge del disco de acrecimiento que rodea el agujero negro; debido a la rotación del disco, las líneas de campo se “enrollan” formando una estructura helicoidal que confina y acelera las partículas que forman el chorro. Una estructura helicoidal, pero vista de frente como ocurre en 4C+01.28, explicaría las diferentes orientaciones del campo magnético que vemos en este blázar.

El segundo modelo, por su parte, sostiene que los chorros se forman en el propio agujero negro, y que la distinta orientación del campo magnético de la región más externa de 4C+01.28 puede explicarse por la interacción del material del chorro con el medio externo.

Para comprobar qué escenario es el correcto son necesarias observaciones muy precisas de la base del chorro y de cómo la luz está polarizada. La luz que recibimos del universo es el resultado de la superposición desordenada de muchas ondas electromagnéticas que vibran aleatoriamente, es decir, luz no polarizada. Bajo algunas circunstancias, como en entornos con campos magnéticos intensos, la luz vibra preferentemente en un plano, dando lugar a luz polarizada.

“Si el chorro emerge del disco de acrecimiento veremos una estructura más abierta y luz muy polarizada, en tanto que si es impulsado por el propio agujero negro la señal será más compacta, con mayor nivel de opacidad y menor grado de polarización”, apunta Alberdi (IAA-CSIC).

Más información en la web del IAA-CSIC.

 

#Granada La Vía Láctea podría albergar 100.000 millones de enanas marrones

2MASSJ22282889-431026
By NASA/JPL-Caltech (http://planetquest.jpl.nasa.gov/image/114) [Public domain], via Wikimedia Commons

Las enanas marrones, en ocasiones conocidas como ‘estrellas fallidas’ son el eslabón entre las estrellas de baja masa y los grandes planetas gaseosos. Se trata de objetos débiles y difíciles de estudiar, de modo que aún se desconocen muchas de sus características, e incluso el número de enanas marrones que existen. Un estudio, en el que participa el Instituto de Astrofísica de Andalucía (IAA-CSIC), apunta a que la Vía Láctea podría contener entre veinticinco y cien mil millones de enanas marrones.

Se cree que las enanas marrones siguen un proceso de formación similar al de las estrellas, que comienza con la fragmentación y contracción de una nube de gas interestelar. Sin embargo, estos objetos apenas alcanzan un 10% de la masa del Sol, lo que impide que se desencadenen las reacciones nucleares que alimentan el brillo de las estrellas y provoca que con el tiempo vayan debilitándose. Desde el hallazgo de las primeras enanas marrones en 1995 se han detectado más de 2.000, principalmente en regiones de formación estelar cercanas y con una densidad de estrellas baja.

Ahora, un equipo internacional de investigadores ha buscado enanas marrones en el cúmulo estelar joven RCW 38, que presenta una densidad estelar muy alta y un gran número se estrellas masivas. Se trata de un entorno totalmente distinto a aquellos donde se han estudiado las enanas marrones, y los investigadores buscaban comprobar si su lugar de nacimiento afecta a la tasa de formación de enanas marrones, que en los cúmulos cercanos puede ascender a una enana marrón por cada dos estrellas.

5.500 años luz de distancia

“Se trata del primer estudio de este tipo en un cúmulo estelar masivo a una distancia mayor que un kilopársec (3.262 años luz), y representa un gran paso adelante en este campo –apunta Rainer Schoedel, investigador del Instituto del IAA-CSIC que participa en el estudio–. La gran resolución angular en óptica adaptativa del instrumento NACO del Very Large Telescope (ESO) resultó fundamental en este estudio y, precisamente, mi experiencia con imágenes de este tipo ha sido mi aportación en el trabajo”.

Los investigadores han hallado que RCW 38, que se encuentra a 5.500 años luz de distancia, muestra una proporción similar de enanas marrones y estrellas que otros cúmulos cercanos y poco masivos, lo que apunta a que las condiciones donde se forman no afectan al número de enanas marrones.

Los investigadores calculan que en la Vía Láctea podría haber entre 25.000 y 100.000 millones de enanas marrones. Considerando que nuestra galaxia contiene entre 100.000 y 400.000 millones de estrellas, constituye una proporción muy alta. “Y, dado que estos objetos son extremadamente débiles, puede que solo estemos viendo la punta del iceberg”, concluye Schoedel.

Más información en la web del SINC.

 

#Granada Nuevos datos para medir la influencia de la variabilidad solar sobre el clima terrestre #CambioClimático

Fases del Sol: Créditos NASA
Fases del Sol: Créditos NASA

 

l Sol muestra un ciclo de once años a lo largo del que su actividad aumenta y disminuye. Este ciclo produce cambios en la cantidad de energía que emite, lo que se conoce como forzamiento solar, y cuya influencia sobre el clima terrestre debe tenerse en cuenta en simulaciones de modelos climáticos. Un equipo internacional liderado por el centro GEOMAR de Kiel y el Instituto de Astrofísica de Andalucía (IAA-CSIC) ha publicado nuevos datos, que muestran una influencia significativamente mayor de los efectos del ciclo solar, particularmente en la estratosfera.

¿Cuánto influyen las variaciones del ciclo solar en nuestro sistema climático? ¿Podría la elevación de la temperatura de la Tierra, debida a efectos antropogénicos, ser compensada en parte por una reducción del forzamiento solar en el futuro? Estas preguntas, que han ocupado el foco de la investigación sobre el clima durante mucho tiempo, se hallan más cerca de una respuesta gracias a este trabajo, que servirá de base para el próximo informe sobre la evaluación del clima del Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC).

“En este nuevo conjunto de datos, la variabilidad en la región ultravioleta del espectro solar es más fuerte que antes, lo que conduce a un calentamiento de la estratosfera y a un aumento de la producción de ozono durante el máximo de la actividad del Sol”, explica la investigadora Katja Matthes (GEOMAR) que, junto con Bernd Funke (IAA-CSIC) encabeza el estudio. Estos procesos podrían influir también en el clima superficial a través de los complejos mecanismos de interacción que se producen en la atmósfera.

“Estos datos proporcionan una estimación más sofisticada de la evolución futura de la actividad solar -explica Bernd Funke, del Instituto de Astrofísica de Andalucía-. Para el 2070 se espera una disminución de la actividad media  del Sol, lo que en principio contrarresta la señal antropogénica del calentamiento global; sin embargo, no se traducirá en una influencia significativa en las temperaturas medias en la superficie, aunque los efectos regionales no deben ser despreciables”.

Este nuevo conjunto de datos, que incluye los efectos de las partículas y una nueva estimación de la “constante solar” (o la cantidad de radiación promedio del Sol) ha sido posible gracias al trabajo de un grupo multidisciplinar, que incluye físicos solares, expertos en partículas energéticas y modeladores del clima, y forma parte de un proyecto internacional del programa mundial de investigación climática. Se trata, a día de hoy, de la mejor evaluación posible de la variabilidad solar pasada, presente y futura.
“Este nuevo conjunto de datos ayudará a mejorar aún más nuestra comprensión de la variabilidad del clima a escala de décadas y a distinguir más claramente los procesos naturales de los antropogénicos”, concluye Matthes (GEOMAR).

Más información en el IAA-CSIC.

 

#Almería Puntos Rojos: la búsqueda en directo de planetas terrestres alrededor de Próxima Centauri continúa

New shot of Proxima Centauri, our nearest neighbour
ESA/Hubble [CC BY 4.0 (http://creativecommons.org/licenses/by/4.0)], via Wikimedia Commons

El equipo responsable de la campaña Pale Red Dot, en la que participa el Instituto de Astrofísica de Andalucía (IAA-CSIC) y que el año pasado descubrió un planeta alrededor de la estrella más cercana a nuestro Sol, Próxima Centauri, ha reanudado su búsqueda de planetas similares a la Tierra con una nueva iniciativa.

La campaña Red Dots seguirá a los astrónomos mientras usan el cazador de exoplanetas HARPS para buscar planetas alrededor de algunos de nuestros vecinos estelares más cercanos: Próxima Centauri, la estrella de Barnard y Ross 154. El Observatorio Europeo Austral (ESO) se une a este experimento, que permitirá al público y a la comunidad científica acceder a datos de observación de al menos Próxima Centauri a medida que se desarrolle la campaña.

El equipo científico, encabezado por Guillem Anglada-Escudé, de la Universidad Queen Mary de Londres, adquirirá y analizará datos del buscador de planetas de alta velocidad (HARPS) y otros instrumentos de ESO en todo el mundo durante aproximadamente noventa noches. Las observaciones fotométricas comenzaron el 15 de junio y las observaciones espectrográficas comenzarán el 21 de junio.

HARPS es un espectrógrafo con una precisión inigualable, el buscador más exitoso de exoplanetas de baja masa construido hasta la fecha. Anclado al telescopio ESO de 3,6 metros en La Silla, HARPS trabaja detectando los diminutos movimientos del movimiento de la estrella generados por la atracción de un exoplaneta en órbita. HARPS es capaz de detectar movimientos de solo 3,5 kilómetros por hora (nuestra velocidad de paseo, aproximadamente) desde miles de millones de kilómetros de distancia.

Entre las estrellas apuntadas por Red Dots se encuentra Próxima Centauri, en torno a la que se halló recientemente un planeta de tipo rocoso. Próxima Centauri es la estrella más cercana a nuestro Sol, a solo 4,2 años luz de distancia. Puede ser uno de los lugares más adecuados para buscar vida más allá de nuestro Sistema Solar, a medida que nuestros instrumentos y tecnologías avancen.

A principios de este año, ESO anunció una asociación con Breakthrough Initiatives, que tiene como objetivo trabajar en el desarrollo de una nueva tecnología que permita el vuelo espacial no tripulado ultraligero al 20% de la velocidad de la luz. Este tipo de “nanonaves” podrían ser enviadas a las tres estrellas del sistema Alfa Centauri, del cual Próxima Centauri es la más cercana a nuestro Sol.

Las otras dos estrellas observadas durante la campaña Red Dots son la estrella de Barnard, una enana roja de baja masa a casi seis años luz de distancia y Ross 154, otra enana roja a 9,69 años luz de distancia.

Las observaciones del telescopio se complementarán con una campaña de divulgación. La campaña Pale Red Dot reveló los métodos y los pasos a la hora de hacer ciencia, pero los resultados se presentaron solo después del proceso de revisión por pares. Esta vez, los datos observacionales de Próxima Centauri serán revelados, analizados y discutidos en tiempo real.

Las colaboraciones y contribuciones de ciudadanos y científicos interesados serán alentadas a través de las redes sociales y un foro abierto, así como a través de herramientas de apoyo de la Asociación Americana de Observadores de Estrellas Variables (AAVSO).

Cualquier observación presentada durante este tiempo será, por supuesto, preliminar y no debe ser utilizada o citada en la literatura de referencia. El equipo no producirá declaraciones concluyentes, ni reclamará ningún hallazgo hasta que un artículo sea escrito, revisado por pares y aceptado para publicación.

La campaña Red Dots mantendrá informado al público a través del sitio web, donde se publicarán las actualizaciones semanales, junto con artículos de apoyo y aspectos destacados de la semana, incluyendo las contribuciones presentadas por la comunidad. Las conversaciones tendrán lugar también en la página de Red Dots Facebook, la cuenta de Red Dots Twitter y el hashtag #reddots.

Se desconoce cuál será el resultado de la campaña Red Dots. Después de la adquisición y el análisis de los datos, el equipo científico presentará los resultados para la revisión formal por pares. Si se hallan exoplanetas alrededor de estas estrellas, el Telescopio Extremadamente Grande de ESO, que verá la primera luz en 2024, debería poder capturarlas directamente y caracterizar sus atmósferas, un paso crucial hacia la búsqueda de evidencia de vida más allá del Sistema Solar.

Más información en la web del IAA-CSIC

 

#Granada El instrumento español IMaX analiza en detalle cómo se comporta el Sol en plena actividad

The Sun by the Atmospheric Imaging Assembly of NASA's Solar Dynamics Observatory - 20100819
By NASA/SDO (AIA) [Public domain], via Wikimedia Commons

La publicación estadounidense The Astrophysical Journal ha publicado un suplemento de diecisiete artículos sobre los resultados de la misión SUNRISE, un telescopio solar de un metro de diámetro que, durante sendos viajes de cinco días en globo circunvolando el Ártico, estudió la superficie del Sol con un detalle de unos cien  kilómetros, una resolución única. Si en su primer vuelo SUNRISE permitió analizar lo que se conoce como el Sol en calma, que mostró una actividad inesperada, el segundo vuelo ofreció una excelente vista de las regiones activas del Sol.

La actividad solar ha sido asociada a pequeñas edades de hielo en la Tierra o apagones a gran escala, como el que afectó a toda la provincia de Quebec (Canadá), debido a una tormenta solar en 1989. También puede deteriorar los satélites en órbita y producir cortes en las comunicaciones. “Vivimos en la atmósfera extendida de una estrella, el Sol, de modo que resulta imprescindible conocer su comportamiento e intentar predecirlo”, apunta Jose Carlos del Toro Iniesta, investigador del Instituto de Astrofísica de Andalucía (IAA-CSIC) que dirige y coordina la participación española en SUNRISE y cuyo grupo participa en catorce de los diecisiete artículos del suplemento.

 

EL CAMPO MAGNÉTICO: LA CLAVE DE LA ACTIVIDAD SOLAR

El Sol muestra un ciclo de once años a lo largo de los que la actividad, traducida en el número de manchas y de fenómenos violentos, asciende hasta alcanzar un máximo y disminuye después hasta el mínimo solar. El origen de esta actividad reside en el campo magnético, que se genera en el interior del Sol y constituye un vínculo con las capas externas y un medio de almacenamiento, transporte y liberación de energía a lo largo de la superficie y la atmósfera solar. Un campo magnético que, finalmente, determina lo que se conoce como el “clima espacial” de todo el Sistema Solar.

Pero aún no se comprenden del todo la estructura interna, las interacciones o los procesos físicos que gobiernan las estructuras magnéticas del Sol, y el instrumento IMaX está resultando extremadamente eficiente para ahondar en estas cuestiones.

REGIONES ACTIVAS, BOMBAS Y TUBOS MAGNÉTICOS

El campo magnético emerge hacia la superficie generalmente en forma de bucles, cuyos pies presentan polaridades opuestas. Este sería el origen de lo que se conoce como región activa, y en este segundo vuelo IMaX pudo observar, con alta resolución, los primeros pasos en la aparición de dos de ellas.

Así pudo describirse con extremo detalle cómo el campo magnético interactúa con el material de la superficie del Sol, arrastrándolo en su camino. Este material, que funciona como lastre, termina por caer siguiendo las líneas de campo magnético y forma cascadas a los pies del bucle, que anclan el campo magnético a la fotosfera, o superficie visible del Sol. Finalmente, se detecta un aumento del brillo y un descenso del flujo magnético, que los investigadores interpretan como una reconexión magnética, o reconstrucción del campo magnético solar.

Estas reconexiones magnéticas, que tienen lugar frecuentemente en el Sol y en las que la energía magnética se convierte en calor, generan a veces fenómenos más intensos, e IMaX detectó y analizó lo que se conoce como bomba de Ellermann, un aumento explosivo y localizado del brillo y la temperatura que se relaciona con las regiones activas jóvenes y aún en desarrollo.

Se cree que las bombas de Ellermann responden a reconexiones magnéticas y se observan como llamaradas que parecen arraigadas a la fotosfera. Sin embargo, los datos de IMaX y las simulaciones computacionales asociadas muestran que esos drásticos cambios en la arquitectura del campo magnético solar se producen a mayor altura, unos doscientos kilómetros por encima de la fotosfera.

Otro resultado destacable de IMaX analiza los tubos a través de los que emerge el campo magnético. En ocasiones, estos tubos pueden convertirse en circuitos por los que fluye el plasma solar, y deberían observarse como un par de concentraciones magnéticas con distintas polaridades unidas por una serie de líneas de campo magnético.

“La observación directa de estas líneas había resultado imposible hasta ahora, pero los datos adquiridos con IMaX han permitido no solo resolver la topografía magnética de un tubo en tres dimensiones, sino también seguir su evolución durante tres minutos”, destaca Jose Carlos del Toro Iniesta (IAA-CSIC). La reconstrucción muestra cómo el arco asciende mientras sus pies van separándose, y la secuencia finaliza cuando la estructura sobrepasa la fotosfera, lo que indica que muy posiblemente estas estructuras también puedan observarse en la cromosfera, o la envoltura externa del Sol.

“La misión SUNRISE, e IMaX concretamente, se han revelado como potentes herramientas para el estudio del Sol. Ya estamos preparando un tercer vuelo de la misión que tendrá lugar en 2021, con un nuevo IMaX+ y otro instrumento, el espectropolarímetro SCIP, adelanta Jose Carlos del Toro (IAA-CSIC). El primero seguirá siendo íntegramente español y el segundo lo hacemos con nuestros colegas japoneses de NAOJ.

SUNRISE, EL TELESCOPIO POLAR

La misión SUNRISE ha heredado las fortalezas de algunos de los mejores observatorios solares, como la Torre Solar Sueca (SST, Isla de la Palma) o el satélite HINODE, e introduce mejoras como la observación en el ultravioleta o la posibilidad de obtener un mapa en dos dimensiones del campo magnético al completo, además de su inigualable resolución. El empleo de un globo estratosférico le permite trabajar en condiciones similares a las de los satélites y evitar la degradación de las imágenes producida por las turbulencias de la baja atmósfera terrestre, pero con un coste y un tiempo de ejecución considerablemente menor. Además, su trayectoria circular por el Ártico le permite evitar los ciclos día y noche y observar el Sol de forma ininterrumpida durante toda la duración del vuelo, así como la generación de energía constante gracias a los paneles solares.

SUNRISE surcó el Ártico desde Suecia hasta alcanzar el norte de Canadá, donde la instrumentación fue recuperada. La misión es fruto de una colaboración entre la agencia espacial alemana DLR, la estadounidense NASA y el Programa Nacional del Espacio español.

EL PROYECTO IMaX

El Programa Nacional del Espacio español ha contribuido en SUNRISE con el diseño y elaboración del magnetógrafo IMaX y el análisis estructural y térmico del sistema a través de cinco instituciones: el Instituto de Astrofísica de Andalucía (IAA-CSIC), el Instituto de Astrofísica de Canarias (IAC), el Grupo de Astronomía y Ciencias del Espacio (GACE) de la Universidad de Valencia, el Instituto Nacional de Técnica Aeroespacial (INTA) y el Instituto de microgravedad “Ignacio da Riva” de la Universidad Politécnica de Madrid.

IMaX (siglas inglesas de Imaging Magnetograph eXperiment, o magnetógrafo experimental con imagen) se ha diseñado para estudiar el campo magnético solar con una resolución sin precedentes y por periodos de varios días con una calidad de imagen constante, lo que permite avanzar de forma notable en el conocimiento del magnetismo solar, su evolución y sus efectos sobre el medio interplanetario. Este instrumento es precursor del magnetógrafo PHI (siglas inglesas de Polarimetric and Helioseismic Imager, imaginador polarimétrico y heliosísmico) para la misión Solar Orbiter de la ESA.

Más información en la web del Instituto de Astrofísica de Andalucía CSIC.

 

 

#Almería La contaminación lumínica se podría doblar en pocos años si se mide mal

Contaminación Lumínica
Contaminación Lumínica

 

La preocupación por la contaminación lumínica surgió en el ámbito astronómico, por la pérdida de calidad del cielo que perjudica las observaciones y que ha provocado incluso el cierre de observatorios históricos, como el de Monte Wilson en Los Ángeles. Sin embargo, en la última década han proliferado estudios que relacionan el exceso de iluminación nocturna con problemas en nuestra salud y con perjuicios en los ecosistemas que, sumados al derroche energético, muestran la importancia de regular la contaminación lumínica.

Ahora, un estudio liderado por el Instituto de Astrofísica de Andalucía (IAA-CSIC) muestra que los sensores más comunes para monitorizar la contaminación lumínica en todo el mundo –Sky Quality Meter (SQM) y los satélites VIIRS y DMSP- tienen un limitación fundamental para trazar la evolución de la contaminación lumínica: son sensores ‘daltónicos’ y no ven en color. El trabajo se publica en la revista Monthly Notices of the Royal Astronomical Society.

“Aunque las imágenes de iluminación nocturna que estamos acostumbrados a ver muestran color, se trata de una interpretación artística de imágenes en blanco y negro”, apunta Alejandro Sánchez, investigador del IAA que encabeza el estudio. Así, el recientemente publicado Atlas Mundial de la Contaminación lumínica solo representa la punta del iceberg, como los autores ya reconocían en el artículo, ya que fue calibrado principalmente con este tipo de dispositivos”.

En el nuevo estudio se muestra cómo el sensor más popular para trazar la evolución de la contaminación lumínica desde tierra, el SQM, podría estar dando valores iguales para una ciudad iluminada con sodio y otra con LED blancos de 3000 kelvin cuando, en realidad, puede haber un 100% más de contaminación lumínica en el segundo caso (los kelvin son la medida empleada para medir la temperatura de color de los LED).

“Esto es muy importante porque nos hallamos en un momento crucial: en ciudades de todo el mundo se están sustituyendo las lámparas de sodio tradicionales por dispositivos LED, y vemos que en este caso es fundamental controlar el color ya que podemos tener la falsa sensación de estar reduciendo la contaminación lumínica cuando en realidad la estamos duplicando”, señala Alejandro Sánchez.

El estudio indica cómo el cambio a LED blancos puede llegar a contaminar lo mismo que las tradicionales lámparas de sodio, pero para ello es necesario bajar la potencia al menos a un 42% y no emitir luz directa por encima de la horizontal.

Gracias a las conclusiones de este estudio, ratificadas por un informe del Departamento de Energía de Estados Unidos publicado la pasada semana, los Ayuntamiento de Montreal y Quebec han decidido modificar su plan de alumbrado público, reduciendo a un tercio la intensidad de los nuevos LED, con el compromiso de no usar iluminación que supere los 2700 kelvin.

“La contaminación lumínica es un problema serio, que debe abordarse desde las agendas políticas. No solo por sus consecuencias sobre nuestra salud o los ecosistemas, sino porque solo en España supone un derroche de entre 655 y 1255 millones de euros anuales”, señala Sánchez (IAA-CSIC).

Más información en la web de la Agencia SINC

 

#Almería Científicos españoles y chinos analizan 50 agujeros negros supermasivos

Agujero Negro NASA
Agujero Negro NASA

El observatorio hispano-alemán de Calar Alto, el mayor observatorio astronómico de Europa continental, ha firmado un acuerdo con la Universidad de Pekín para el desarrollo, desde el telescopio de 2,2 metros, de un estudio intensivo de los agujeros negros supermasivos situados en la región central de las galaxias. Estas zonas constituyen los denomimados núcleos activos de galaxias y se hallan entre los objetos más energéticos que existen en el universo.

El proyecto, que empleará el 60% del tiempo del telescopio y se extenderá hasta finales de 2019 (con una posible renovación hasta 2021), situará al observatorio en la vanguardia del estudio de los núcleos activos de galaxias y contribuirá a dotar de estabilidad presupuestaria a Calar Alto.

“La Universidad de Pekín se interesó en el observatorio de Calar Alto por la calidad de su cielo y de sus proyectos –apunta Jesús Aceituno, director del observatorio–. Calar Alto se ha especializado en la última década en el desarrollo de grandes sondeos astronómicos, como CALIFA o ALHAMBRA, que están siendo fundamentales para la astrofísica moderna. Hoy nos encontramos con la experiencia suficiente para abordar este proyecto ambicioso y de largo recorrido, que nos ayudará a entender mejor estos gigantescos agujeros negros así como las implicaciones que tienen en cosmología”.

Los núcleos activos de galaxias (o AGN, por su acrónimo en inglés) pueden emitir de forma continuada más de cien veces la energía de todas las estrellas de la Vía Láctea. Su estructura consiste en un agujero negro, de hasta miles de millones de masas solares, rodeado de un disco de gas que lo alimenta y que, en su proceso de caída, libera gran cantidad de energía.

Aunque se conocen y estudian desde hace décadas, los núcleos activos presentan numerosas cuestiones aún no resueltas, entre ellas el proceso físico de caída de material hacia el agujero negro o la relación entre la evolución del mismo y la de su galaxia anfitriona.

El proyecto que se desarrollará en Calar Alto estudiará un tipo específico de núcleos activos, que muestran una tasa de acrecimiento, o de absorción de material del disco, especialmente elevada.

Núcleos activos como candelas para medir distancias

“Estamos empleando el telescopio de 2,2 metros de Calar Alto para desarrollar un estudio intensivo de una muestra de unos cincuenta agujeros negro supermasivos que nos permitirá determinar sus propiedades fundamentales, entre ellas su masa”, apunta Jian-Min Wang, investigador de la universidad de Pekín que encabeza el estudio.

“Esto nos permitirá abordar las cuestiones abiertas en el estudio de las galaxias activas –añade–, y comprobar si pueden servirnos de candelas estándar para medir distancias en el universo”.

El observatorio de Calar Alto incluye tres telescopios situados en la Sierra de Los Filabres, al norte de Almería. Es operado conjuntamente por el Instituto Max-Planck de Astronomía en Heidelberg, Alemania, y el Instituto de Astrofísica de Andalucía (CSIC) en Granada.

Fuente: Web de la Agencia SINC.

 

#Granada OCTOCAM, liderado por astrónomos del IAA, será el próximo instrumento del observatorio Gemini

Créditos: De Credit:Image: European Space Agency & NASAAcknowledgements:Project Investigators for the original Hubble data: K.D. Kuntz (GSFC), F. Bresolin (University of Hawaii), J. Trauger (JPL), J. Mould (NOAO), and Y.-H. Chu (University of Illinois, Urbana)Image processing: Davide De Martin (ESA/Hubble)CFHT image: Canada-France-Hawaii Telescope/J.-C. Cuillandre/CoelumNOAO image: George Jacoby, Bruce Bohannan, Mark Hanna/NOAO/AURA/NSF – http://www.spacetelescope.org/news/html/heic0602.html ([cdn.spacetelescope.org/archives/images/screen/heic0602a.jpg direct link])See also: http://hubblesite.org/newscenter/newsdesk/archive/releases/2006/10/image/a, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=36216331

Los telescopios gemelos del observatorio Gemini, con sus 8,1 metros de diámetro y su ubicación en ambos hemisferios (Chile y Hawái), disponen de un acceso privilegiado a todo el cielo. En 2014, Gemini realizó una llamada para estudios de viabilidad de futuros instrumentos que mantuvieran la excelencia del observatorio durante la próxima década. Entre los seleccionados se hallaba OCTOCAM, un ambicioso proyecto encabezado por investigadores del grupo HETH (High Energy Transients and their Hosts) del Instituto de Astrofísica de Andalucía (IAA-CSIC).

Tras dicho estudio, OCTOCAM participó en el concurso para la construcción del nuevo instrumento para el observatorio, en agosto de 2016. Tras una exhaustiva evaluación, el proyecto fue seleccionado para su construcción y financiado con un presupuesto de quince millones de dólares, en el marco de un contrato firmado la semana pasada.

“OCTOCAM se ha diseñado para revolucionar la investigación en múltiples campos de la astrofísica. Para ello, un amplio grupo internacional de investigadores ha seleccionado los casos científicos más punteros de cada rama, y eso se ha utilizado para definir las características técnicas que permitirán a OCTOCAM contribuir a responder a las grandes preguntas que nos plantea la astrofísica”, apunta Antonio de Ugarte Postigo, investigador del IAA-CSIC que lidera el proyecto.

OCTOCAM utilizará ocho detectores de última generación para observar simultáneamente en el óptico y en el infrarrojo, y alcanzará velocidades de lectura de decenas de milisegundos. Estas características, unidas a su excepcional sensibilidad, lo convierten en un instrumento sin igual hasta la fecha, capaz de multiplicar por ocho la potencia de un gran telescopio.

Aunque el instrumento se ha diseñado para satisfacer las necesidades de muchas áreas de investigación, OCTOCAM está optimizado para el estudio de objetos transitorios: eventos muy energéticos y distantes como las explosiones de rayos gamma o las supernovas. “La resolución temporal de OCTOCAM permitirá estudiar, a cámara lenta, la explosión de una estrella al final de su vida y la formación de un agujero negro”, explica Christina Thöne (IAA-CSIC), gestora de la parte española del proyecto.

OCTOCAM se instalará en el telescopio Gemini Sur, en Chile, y dará soporte al proyecto LSST (Large Synoptic Survey Telescope), un telescopio que detectará miles de objetos transitorios cada noche. Así, OCTOCAM aportará una visión privilegiada de los distintos tipos de supernovas, de sus estrellas progenitoras y de la física de la explosión; de la formación y evolución de las estrellas de neutrones; de las explosiones de rayos gamma, que permiten explorar el universo hasta la época de la formación de las primeras estrellas; o de los agujeros negros, tanto estelares como supermasivos.

OCTOCAM trabajará además en otros campos de la astrofísica: podrá identificar y caracterizar planetas en torno a otras estrellas mediante el método de los tránsitos, estudiar el interior de las estrellas analizando las oscilaciones de su superficie, trazar la historia del Sistema Solar estudiando objetos más allá de Neptuno, o estudiar la evolución química de las galaxias, entre otros.

El instrumento, que se entregará en 2022, será el primero liderado desde fuera de los miembros asociados a Gemini (EEUU, Canadá, Chile, Brasil y Argentina). Ha sido coordinado desde el Instituto de Astrofísica de Andalucía (IAA-CSIC) por Antonio de Ugarte Postigo y Christina Thöne, en colaboración con el Southwest Research Institute (SwRI, Texas), la universidad George Washington (GWU, Washington D.C.) y FRACTAL S.R.L. (Madrid). “Queremos que este trabajo sea un homenaje a nuestro compañero Javier Gorosabel, fallecido en 2015, que fue uno de los creadores del concepto de OCTOCAM”, concluye Antonio de Ugarte Postigo (IAA-CSIC).

ACERCA DEL OBSERVATORIO GEMINI

El Observatorio Gemini es una colaboración internacional con dos telescopios idénticos de ocho metros. El Telescopio Frederick C. Gillett Gemini se encuentra en Mauna Kea, Hawái (Gemini Norte) y el otro telescopio en Cerro Pachón en el centro de Chile (Gemini Sur). Juntos los telescopios gemelos proporcionan una cobertura completa sobre ambos hemisferios del cielo. Los telescopios incorporan tecnologías que permiten que los espejos grandes, relativamente delgados, bajo control activo, recojan y enfocen tanto la radiación visible como la infrarroja del espacio.

El Observatorio Gemini proporciona a las comunidades astronómicas de los siete países socios instalaciones astronómicas de vanguardia que asignan el tiempo de observación en proporción a la contribución de cada país. Además del apoyo financiero, cada país aporta también importantes recursos científicos y técnicos. Las agencias nacionales de investigación que forman la asociación Gemini incluyen: la Fundación Nacional de Ciencias (NSF), el Consejo de Ciencia y Tecnología del Reino Unido (STFC), el Consejo Nacional de Investigación del Canadá (CNRC), la Comisión Nacional de Investigación Científica y Tecnológica CONICYT), el Consejo Australiano de Investigación (ARC), el Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y el Consejo Nacional de Desarrollo Científico y Tecnológico CNPq. El observatorio es administrado por la Asociación de Universidades para la Investigación en Astronomía, Inc. (AURA) bajo un acuerdo de cooperación con la NSF. La NSF también sirve como agencia ejecutiva para la asociación internacional.

Más información en el IAA-CSIC.

 

#Granada Se hallan unas “gemelas” de las galaxias primigenias que permiten estudiar las etapas iniciales de la formación galáctica

Evolucion Universo CMB Timeline300 no WMAP
By NASA, Ryan Kaldari, adaptation to Spanish: Luis Fernández García, wiping WMAP: Basquetteur [CC0], via Wikimedia Commons

Un equipo internacional de astrónomos ha descubierto una población de minúsculas galaxias recién nacidas a más de once mil millones de años luz de distancia, que arrojan nueva luz sobre las primeras etapas de formación de galaxias. Aunque raros, estos objetos revelan con un detalle sin precedentes las condiciones que existían en la época de formación de las primeras galaxias, formadas pocos cientos de millones de años después del Big Bang.
En astrofísica, mirar lejos equivale a mirar al pasado. De la misma manera que la luz del Sol tarda ocho minutos en alcanzarnos (y, por lo tanto, vemos el Sol cuando era ocho minutos más joven), si observamos a grandes distancias estaremos estudiando épocas pasadas. Y en las últimas décadas, los astrónomos han conseguido penetrar en lo que se conoce como “edades oscuras”, un período correspondiente a los primeros setecientos millones de años después del Big Bang y en el que las primeras galaxias, muy débiles, se hallaban envueltas en hidrógeno neutro, un gas que aumenta la opacidad del medio.
Precisamente, esa envoltura opaca ha impedido realizar estudios detallados de estas galaxias con los observatorios actuales y, como resultado, el nacimiento y las primeras fases del crecimiento de las galaxias no han podido ser estudiadas en detalle.
Para identificar y estudiar las propiedades de estas galaxias primigenias, un equipo internacional de astrónomos ha adoptado un enfoque diferente. El equipo presenta el descubrimiento de galaxias nacientes observadas en un momento cósmico posterior, solo mil millones de años después del final de las edades oscuras, cuando el universo contaba con un 5% de su edad actual.
Al hallarse más próximas y en un entorno limpio de la “niebla” circundante, estas galaxias son más fáciles de estudiar en detalle. “Por primera vez, podemos observar una población de galaxias recién nacidas extremadamente jóvenes, que presentan todas las propiedades que se espera sean ubicuas en galaxias normales en tiempos mucho más antiguos”, indica Ricardo Amorín (INAF/Universidad de Cambridge), investigador que encabeza el estudio.

Los datos obtenidos revelan que las galaxias son muy ricas en gas ionizado, “con muy pocas cantidades de polvo y elementos pesados, como el carbono y el oxígeno, que son liberados por estrellas masivas y calientes de corta vida”, señala Enrique Pérez Montero, investigador del Instituto de Astrofísica de Andalucía (IAA-CSIC) que participa en la investigación.

Estas estrellas serían las responsables de ionizar el gas circundante, y quizá también del fin de las edades oscuras: las estrellas masivas terminan su vida en explosiones de supernova, que producen grandes flujos de gas que, por un lado, “contaminaron” el universo con los elementos pesados formados en sus núcleos y, por otro, desplazaron el hidrógeno neutro y fueron creando halos ya transparentes.

Así, este estudio, que ha analizado más de dos mil galaxias y ha hallado diez de estas galaxias primigenias, ha capturado lo que parece ser uno de los primeros episodios masivos de formación estelar del universo. Estas galaxias son unas treinta veces más pequeñas y unas cien veces menos masivas que la Vía Láctea, con formas compactas e irregulares que en algunos casos se asemejan a renacuajos y pares de galaxias en proceso de fusión.

El hallazgo, publicado en la revista Nature Astronomy, ha sido posible gracias a un gran esfuerzo de observación, coordinado desde el Sondeo Ultraprofundo VIMOS desarrollado en el Very Large Telescope (VLT/ESO), que también incluye imágenes obtenidas por telescopio espacial Hubble (NASA/ESA).

Más información en la web del IAA-CSIC

Ciencia Andaluza: Se observan brotes de formación estelar en un tipo de galaxias donde, en teoría, ya no nacen estrellas

El proyecto CALIFA ha permitido detectar, en tres galaxias elípticas, unos brazos muy tenues donde se están formando estrellas. Los datos, obtenidos con el telescopio de 3,5 metros del Observatorio de Calar Alto, contradicen la creencia generalizada de que en las galaxias viejas no nacen estrellas.

Las galaxias elípticas se caracterizan por su forma esferoidal, carente de rasgos destacables, y por un color rojizo que procede de una población estelar muy envejecida. Se trata de galaxias muy masivas donde la formación de estrellas se detuvo hace miles de millones de años. Sin embargo, un equipo internacional de astrónomos ha hallado, en tres galaxias elípticas del universo cercano, una estructura muy tenue similar a los brazos de las galaxias espirales que alberga estrellas en formación.

“Según nuestra visión actual, los diseños en forma de grandes espirales se asocian con las galaxias con forma de disco, como la Vía Láctea o M101. Estas son, generalmente, regiones donde la formación estelar se dispara. De ahí que nos sorprendiera descubrir rasgos similares en galaxias elípticas donde, en principio, no se forman estrellas”, apunta Jean Michel Gomes, investigador del Instituto de Astrofísica y Ciencias del Espacio (IA) de Oporto (Portugal) que encabeza el estudio.

El hallazgo de estos brazos espirales, extremadamente tenues, ha sido posible gracias a CALIFA, un proyecto desarrollado en el Observatorio de Calar Alto que emplea la técnica conocida como espectroscopía 3D, que permite cartografiar galaxias enteras y generar mapas de sus distintas propiedades, como la edad de sus estrellas, su velocidad o su composición química. Los datos de CALIFA han sido combinados con las imágenes del sondeo SDSS.

“Nunca hubiéramos podido detectar rasgos tan débiles sin CALIFA -señala José Manuel Vílchez, investigador del Instituto de Astrofísica de Andalucía (IAA-CSIC) que participa en el trabajo-. Con las técnicas tradicionales estructuras así quedaban diluidas por la luz de fondo de las estrellas, pero la sensibilidad espectral de CALIFA ha abierto un nuevo escenario en el estudio de las galaxias elípticas”.

Más información en la web del Instituto de Astrofísica de Andalucía

Créditos de la fotografía: De Credit:Image: European Space Agency & NASAAcknowledgements:Project Investigators for the original Hubble data: K.D. Kuntz (GSFC), F. Bresolin (University of Hawaii), J. Trauger (JPL), J. Mould (NOAO), and Y.-H. Chu (University of Illinois, Urbana)Image processing: Davide De Martin (ESA/Hubble)CFHT image: Canada-France-Hawaii Telescope/J.-C. Cuillandre/CoelumNOAO image: George Jacoby, Bruce Bohannan, Mark Hanna/NOAO/AURA/NSF – http://www.spacetelescope.org/news/html/heic0602.html ([cdn.spacetelescope.org/archives/images/screen/heic0602a.jpg direct link])See also: http://hubblesite.org/newscenter/newsdesk/archive/releases/2006/10/image/a, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=36216331

Sin Ciencia no hay futuro. Defiende la Ciencia Andaluza #CienciaAndaluza