#Sevilla Identifican iglesias españolas dedicadas a la Virgen de la Asunción y alineadas con la salida del sol

Salida del Sol
Salida del Sol

Cuando se observa una iglesia desde el cielo se puede ver cómo su eje principal se orienta con respecto a los puntos cardinales, así como medir el ángulo que forma con el Norte, que recibe el nombre de acimut. “Esta orientación puede encerrar un mensaje que hasta ahora ha permanecido velado”, apunta José Mª Abril, catedrático de Física Aplicada de la Universidad de Sevilla, en su trabajo publicado en el Journal of Skyscape Archaeology.

En el estudio se han medido los acimuts de todas las iglesias parroquiales dedicadas a la Virgen de la Asunción en Andalucía, Extremadura, y los episcopados de Ciudad Real, Albacete, Cartagena y Orihuela (lo que aproximadamente se corresponde con el dominio musulmán a mediados del siglo XII). Cuando se representa la distribución de frecuencias encontramos iglesias orientadas en casi cualquier dirección, aunque con mayor densidad hacia el horizonte de levante. El hecho más sobresaliente es un pico muy intenso alrededor de los 75º.  Un grupo de iglesias (sobre el 10%) ha adoptado un patrón bien definido de orientación, que destaca claramente sobre la distribución continua de fondo.  “Es como si en un aparato de radio moviésemos el dial registrando siempre ruido de fondo hasta dar con una frecuencia donde se emite música”, explica el autor del estudio.

Para alcanzar estos resultados se han usado modelos digitales del terreno y cálculos astronómicos, que demuestran que estas iglesias se orientan al punto del horizonte local por donde se eleva el sol en la festividad de la Virgen de la Asunción (15 de agosto).  Pero hay que tener en cuenta el calendario juliano vigente en la fecha de su fundación, por lo que la mayoría de los alineamientos se producen entre el 24 y el 25 de agosto según el calendario actual. Encontramos estas iglesias en Extremadura (Arroyo de la Luz, Segura de León, Campanario, La Parra), Andalucía central (donde destaca el grupo de Castro del Río, Cañete de las Torres y Bujalance) y Ciudad Real (Puebla del Príncipe, Manzanares). La lista completa puede consultarse en el trabajo citado. Su cronología abarca desde principios del XIV hasta el XVII.

Dentro de las iglesias parroquiales dedicadas a San Francisco de Asís se ha identificado asimismo un grupo que se orienta hacia la puesta del sol en el día de su festividad.

Estos alineamientos pueden producir bellos efectos de iluminación, como los que se describen en el artículo para la parroquia de San Francisco en Bujalance.

Dentro de los complejos ritos para la fundación de una iglesia, en el siglo XIII se incorpora el de la colocación de la primera piedra, que incluía fijar una gran cruz en el lugar donde se alzaría el altar. Una variante del rito contemplaría velar la cruz en la vigilia de la festividad del santo titular, facilitando así un contexto para determinar de una manera práctica la dirección del orto solar.

Desde que en 1823 el poeta inglés William Wordsworth describiera esta práctica en un poema, diversos autores han tratado de encontrar evidencias empíricas de su aplicación real en iglesias medievales de distintas regiones de Europa, con escaso éxito. El profesor José Mª Abril muestra ahora su presencia en España dentro de la zona geográfica y el período histórico estudiado. “Su objeto no sería un mero ejercicio de astronomía aplicada, pero sin fuentes documentales las razones últimas aún se nos escapan, aunque  creemos que podrían escribir nuevas páginas en la historia del pensamiento”, afirma el investigador.

Más información en la Universidad de Sevilla.

 

#Sevilla Home En persona Galería de fotos Videoteca Blogs Equipo Canal Ciencia – UCC+i de la Universidad de Sevilla Ciencias CC. Salud CC. Sociales-Jurídicas Ingeniería-Arquitectura Humanidades Innovación Actividades Desarrollan una antena de cráneo para ayudar a valorar el dolor en pacientes con esguince cervical

Cervical
Cervical

 

El investigador Manuel Freire, del Departamento de Electrónica y Electromagnetismo de la Facultad de Físicade la Universidad de Sevilla, en colaboración con la empresa Biosensores Inteligentes para la Salud, ha desarrollado una antena de cráneo orientable de 32 canales para imagen por resonancia magnética a 3 Teslas, adaptada para los pacientes con movilidad craneal reducida que atiende el Servicio de Radiodiagnóstico del Hospital Nacional de Parapléjicos de Toledo.

El desarrollo de la antena se enmarca en un proyecto de investigación que se lleva a cabo en el Hospital Nacional de Parapléjicos y que está financiado por la Fundación Mutua Madrileña para desarrollar una metodología que permita valorar de manera objetiva el dolor en pacientes con esguince cervical, “una patología originada en un 98% en accidentes de tráfico y que afecta a más de 25.000 españoles cada año”, afirma el profesor Freire.

Los pacientes que se someten al estudio se hallan afectados de movilidad craneal reducida, por lo que la exigencia de orientabilidad espacial de la antena era esencial para poder acomodarse a cada paciente. Esta es una característica que hace de esta antena una herramienta única en su género.

“El diseño de la antena se planificó en colaboración con José Florensa, jefe del Servicio de Radiodiagnóstico del Hospital, que hará uso de la misma en estudios de neuroimagen por espectroscopía de resonancia magnética de 3 Teslas para identificar marcadores del dolor y variaciones del perfil metabólico en distintas áreas del cerebro según la existencia de dolor crónico”, añade este investigador.

Con sus 32 canales, la antena además permite obtener imágenes de alta resolución y en un tiempo reducido al hacer uso de técnicas de aceleración de imagen en paralelo. Esto redunda en un gran beneficio para el paciente al permitir acortar el tiempo de estudio durante el cual el paciente ha de permanecer inmóvil en el escáner de resonancia.

Este avance científico-tecnológico ha contado con la colaboración y el apoyo del doctor en Física Jesús Tornero, de la empresa Biosensores y responsable del Área de Diagnóstico por Imagen del Hospital Los Madroños (Madrid), y el ingeniero mecánico Alberto Cantón.

Fuente: Universidad de Sevilla

 

#Córdoba ¿Por qué nos sentimos diferentes en condiciones microclimáticas similares?

Aula
Aula

Cuántas veces, en una oficina, en la consulta del médico o en una sala de teatro o de cine, por ejemplo, se observa que la sensación térmica o la percepción de humedad es muy diferente de unas personas a otras. Estas situaciones tan habituales, de estar en un mismo espacio y condiciones semejantes y no sentirse igual, es lo que ha inspirado a un grupo de investigación de la Universidad de Córdoba para indagar sobre sus causas y encontrar que existe una relación entre la latitud de la localidad donde nos situamos y las condiciones de confort, relación que puede ponerse de forma matemática.

La investigación, coordinada por el catedrático de E.U. del área de Física Aplicada de la Universidad de Córdoba Antonio Rodero, ha demostrado que las personas, aún estando expuestas a microclimas semejantes, tienen una percepción diferente de los parámetros óptimos de confort, según la localidad donde se encuentren. Dicha investigación ha combinado datos experimentales y medibles relacionados con el microclima con encuestas in situ, que han permitido obtener información sobre factores psicológicos.
En este estudio, realizado en colaboración con la Universidad TecnológicaAlumnado realizando las encuentas en clase   de Bialystok en Polonia dentro del proyecto de investigación interuniversitario “The possibility of the renewable energy sources usage in the context of improving energy efficiency and air quality in buildings and civil constructions”, se realizaron mediciones en el interior de edificios educativos de dos localizaciones climáticas diferentes -la ciudad de Bialystok (Polonia) y la localidad cordobesa de Belmez (España)- pero en días con condiciones microclimáticas similares. Se escogieron ocho aulas diferentes de estos edificios (4 en Bialystok y 4 en Belmez)  y se llevaron a cabo mediciones objetivas de las condiciones microclimáticas (temperatura, presión y humedad relativa del aire en el interior de la estancia) y otros parámetros como el nivel de ruido, ventilación, etc, a lo largo de los 60 minutos de duración de la clases. Al mismo tiempo se realizaron encuestas a los estudiantes sobre su percepción de confort sobre todos ellos. Estas encuestas se repitieron cada 15 minutos de clase para un total de 138 alumnos en Polonia y con 129 en España, un tamaño de muestra representativo, según las estadísticas de población de estudiantes universitarios.ÂÂ
Según se detalla en un artículo publicado recientemente en la revista ‘Applied Thermal Engineering’, el porcentaje de satisfacción de confort fue diferente para los alumnos en función de la localización, pese a que las condiciones a las que se expusieron fueron semejantes en un lugar y otro. Así, los resultados permitieron estimar rangos preferibles de ambientes en el interior de las aulas distintos para cada país de análisis. Un ejemplo de ello es que, si la temperatura en clase era de 23 grados, para los alumnos de Belmez la sensación era de frío, puesto que la temperatura media de confort para ellos en el mes de las medidas (septiembre) se sitúa en 27 grados y para uno de Bialystok, en cambio, era de calor, puesto que su temperatura media de confort baja hasta los 20,5 grados.ÂÂ
Otro resultado adicional de estudio es que el porcentaje de satisfacción de confort en los estudiantes disminuyó durante el tiempo de clase, un resultado que, según los científicos, apoya a otras investigaciones relacionadas con el tiempo óptimo de duración de una clase para garantizar el máximo aprovechamiento del alumnado. En este estudio se llega a la conclusión de que a partir de los 45 minutos, aunque las condiciones microclimáticas tienden a una estabilidad, la satisfacción de los estudiantes disminuye drásticamente. Siendo, por tanto, éste el tiempo óptimo de duración de una clase. El trabajo reflejado en ‘Applied Thermal Engineering’ también concluye que los datos de esta investigación pueden tenerse en cuenta en las normativas para la construcción de edificios educativos en las distintas localidades. El profesor Rodero señala que las condiciones microclimáticas óptimas deben tenerse en cuenta para el diseño del tipo de ventilación del edificio, así como los aislamientos térmicos de las aulas en cada uno de los territorios.
Para este trabajo, Rodero ha contado además con la colaboración del profesorado de la Escuela Politécnica Superior de Belmez, y del grupo de investigación FQM136: Física de Plasma: Diagnosis, Modelo y Aplicaciones.

Más información en la Universidad de Córdoba.

 

#Granada Científicos de la UGR aportan nuevos datos sobre una famosa ley de conducción del calor

Ley de Fourier
Ley de Fourier

 

 

La conocida como Ley de Fourier es la ley de conducción del calor que establece la proporcionalidad entre la corriente de calor y el gradiente de temperatura en un material

Investigadores de la Universidad de Granada (UGR) han aportado nuevos datos sobre la conocida como Ley de Fourier, la ley de conducción del calor que establece la proporcionalidad entre la corriente de calor y el gradiente de temperatura en un material.

Su trabajo, titulado A violation of universality in anomalous Fourier’s law y publicado recientemente en la prestigiosa revista Scientific Reports, del grupoNature, demuestra que la anomalía en la conductividad térmica de los materiales de baja dimensión no es universal como se pensaba hasta ahora, sino que depende de algunos detalles microscópicos del material.

Jean-Baptiste Joseph Fourier formuló su famosa ley de conducción del calor en su libro “Théorie Analytique de la Chaleur”, una ley que ha sido ampliamente estudiada y utilizada a lo largo de los últimos 200 años. Ahora, Pablo Hurtado y Pedro L. Garrido, profesores del departamento de Electromagnetismo y Física de la Materia y miembros del Instituto Carlos I de Física Teórica y Computacional de la UGR, han aportado nuevos datos sobre ella.

Desde hace algunos años se sabe que los materiales de baja dimensión (1d o 2d) presentan una anomalía en su conductividad térmica, que crece sin límite con el tamaño del sistema, lo que implica un transporte super-eficiente de la energía y conlleva un sinfín de aplicaciones. La explicación actual de esta anomalía sugiere que es universal, esto es, que su física es independiente de los detalles, dependiendo sólo de unas pocas características globales del sistema. Esta propiedad es una de las ideas más poderosas y fértiles de la física teórica, ya que explica por qué fenómenos aparentemente diferentes muestran la misma física y pueden ser comprendidos dentro del mismo marco teórico. Por ejemplo, la anomalía en la conductividad térmica se puede relacionar con otro problema aparentemente muy diferente: el crecimiento de superficies rugosas, descrito por la ecuación de Kardar-Parisi- Zhang.

Sin embargo, el estudio liderado por la UGR ha demostrado que la anomalía en la conductividad térmica de los materiales de baja dimensión no es universal, ya que depende de algunos detalles del material en el que se dé este fenómeno. Para llegar a esta conclusión, los investigadores han desarrollado un método de escala novedoso que demuestra que, a pesar de la violación de universalidad observada, existe una generalización de la Ley de Fourier para materiales de baja dimensión, que llamamos Ley de Fourier anómala, que describe de manera precisa el transporte de energía en estos sistemas, incluso en regímenes altamente no lineales e independientemente del tamaño del sistema.

El problema plantea un doble interés para los científicos: por un lado, permite entender la anomalía y la violación de la Ley de Fourier tanto a nivel fundamental como microscópico. Por otro lado, tiene gran interés tecnológico por las múltiples posibilidades que plantea para su aplicación en materiales de baja dimensión.

El ejemplo más característico es el grafeno, un material bidimensional formado por láminas mono-atómicas cristalinas de carbono, aunque hay multitud de ejemplos interesantes, desde cadenas moleculares y nanotubos de carbono, pasando por fibras poliméricas y nano-alambres, hasta ejemplos biológicos como la tela de araña. Todos estos materiales muestran conducción térmica anómala debido a su baja dimensionalidad efectiva, y sus aplicaciones son innumerables (fonónica, transistores, diodos e interruptores térmicos, etc.).

“Estos resultados son importantes porque, por un lado, cuestionan la teoría actual basada en la hidrodinámica fluctuante, señalando la existencia de nueva física, pero al mismo tiempo nos señalan y allanan el camino (sin duda más complicado de lo que esperábamos) para resolver este problema bicentenario”, apuntan los investigadores.

El texto de este artículo puede descargarse gratuitamente de la web de Nature:http://www.nature.com/articles/srep38823

Más información en la Universidad de Granada.

 

Ciencia Andaluza: Ladrillos más económicos y resistentes

Ciencia Andaluza
Ladrillo – Pixabay – Ciencia Andaluza

Investigadores del departamento de Física aplicada de la Universidad de Huelva y de las Universidades Estatal Paulista y del Oeste Paulista de Brasil han conseguido nuevos materiales para la elaboración de ladrillos más resistentes a partir de una materia prima con muy bajo coste. El material se extrae directamente de las plantas de gestión de residuos de construcción sin necesitar apenas tratamiento y evita tener que invertir en material de relleno (gravas y arenas), o en cementadores (cemento o cal) para la fabricación de los nuevos bloques.

Actualmente, las exigencias de las normativas europeas y americanas fijan en 6 y 4 megapascales respectivamente, los mínimos que debe cumplir cualquier material que se utilice en construcción. El megapascal es la medida que utilizan para conocer la capacidad de carga para un ladrillo de pared. Sin embargo, los nuevos bloques ideados por los expertos consiguen una resistencia de más de 7 megapascales.

Además de su alta resistencia y menor coste, otra ventaja añadida es que aumenta la cantidad de materiales aprovechables en las plantas de gestión de residuos de la construcción. Hoy día, los materiales derivados del reciclado de tamaño inferior a 4,8 milímetros son desestimados para su uso, pero con la nueva técnica que plantean los expertos de Huelva se utiliza todo el material obtenido tras el proceso al no poner ningún tipo de limitación al tamaño de las partículas de las materias primas reutilizadas.

Fuente de la noticia y más información en Remedios Valseca / Fundación Descubre

Sin Ciencia no hay futuro. Defiende la Ciencia Andaluza #CienciaAndaluza

Ciencia Andaluza: se logra predecir la cantidad de energía que producen las centrales fotovoltaicas

Ciencia Andaluza
Ciencia Andaluza

El grupo de Grupo de Investigación y Aplicaciones de Inteligencia Artificial de la Universidad de Málaga ha desarrollado un modelo más preciso para predecir la cantidad de energía que recibirán las centrales fotovoltaicas, lo que permite conocer la electricidad que producirán. El método se basa en inteligencia artificial y reduce en un 25% el error de los actuales sistemas, basados en variables meteorológicas.

Hasta el momento, la radiación solar que llegará a la tierra se estima con imágenes de satélite y con distintos tipos de modelos físicos de la atmósfera, que tienen en cuenta parámetros como el nivel de nubosidad, la humedad o la inclinación del terreno. Una vez obtenida la información, se extrapola a otras situaciones similares, pero con un margen de error que puede llegar al 35%. Esto supone un problema para el sector eléctrico, ya que las empresas están obligadas a informar sobre la cantidad exacta de energía que producirán en sus instalaciones con una antelación de un día.

Más información en la fuente de la noticia: Remedios Valseca / Fundación Descubre 

Sin Ciencia no hay futuro. Defiende la Ciencia Andaluza #CienciaAndaluza

 

Ciencia Andaluza: Miden el impacto del accidente nuclear de Fukushima en el aire de Sevilla

Ciencia Andaluza
Ciencia Andaluza

El 11 de marzo de 2011 la central nuclear de Fukushima, la ciudad japonesa donde esta semana ha vuelto a ocurrir un terremoto, liberó multitud de elementos radiactivos a la atmósfera. Investigadores del Centro Nacional de Aceleradores (CNA), en Sevilla, han analizado ahora los que llegaron a la capital hispalense. En concreto, el yodo-131 y el yodo-129, cuyo periodo de desintegración (tiempo necesario para que se desintegren la mitad de los núcleos de una muestra) es, respectivamente, de 8 días y casi 16 millones de años.

A pesar de que la ‘vida’ del yodo-131 es mucho menor que la del yodo-129, el primero presenta una elevada toxicidad, de ahí que sea de gran interés su estudio tras accidentes nucleares. Aunque, precisamente por esa corta vida, una vez ha transcurrido cierto tiempo, ya no se puede evaluar el impacto de este nocivo isótopo, puesto que ya no es detectable.

De este hecho se ha partido para desarrollar el estudio, publicado en el Journal of Environmental Radioactivity, ya que conociendo la cantidad de yodo-129 de una zona se puede conocer la cantidad de yodo-131 que llegó a ese punto, aun habiendo pasado mucho tiempo. Se trata de reconstruir la señal del yodo-131 a partir de la del yodo-129, que permanece mucho tiempo después del accidente.

En este trabajo se han comparado la cantidad de yodo-129 y yodo-131 presente en muestras atmosféricas tomadas en Sevilla durante los meses de marzo y abril de 2011, cuando la nube radiactiva llegó desde Fukushima a España.

Para ello se regristraron medidas de la cantidad de yodo-129 en filtros de alto volumen (para partículas), de carbón activado (para yodo gaseoso) y en agua de lluvia durante los días previos y posteriores al accidente. El yodo-131 ya se midió en su momento en estas muestras, donde aparecía por la catástrofe nuclear. Normalmente los valores no son detectables. Hoy en día ya no es posible detectar el yodo-131 en estas muestras por su corta semivida.

La primera detección de yodo-131 después del accidente de Fukushima en España se tomó en filtros de alto volumen en Sevilla durante el período del 14 al 21 de marzo, seguido de Cáceres y Barcelona.

Más información en la web de la SINC

Sin Ciencia no hay futuro. Defiende la Ciencia Andaluza #CienciaAndaluza

Ciencia Andaluza: Demuestran por primera vez que existe una íntima relación entre sistemas magnéticos y ciertos estados de la actividad cerebral

Ciencia Andaluza
Ciencia Andaluza

Científicos de la Universidad de Granada han demostrado por primera vez que existe una íntima relación entre varios fenómenos emergentes en sistemas magnéticos, muy estudiados por los físicos de la materia condensada, y ciertos estados de la actividad cerebral.

Los investigadores, que han publicado su trabajo el la revista Neural Networks, han estudiado un modelo de cerebro constituido por una red neuronal balanceada con el 80% de sinapsis (unión entre neuronas) excitadoras (esto es, que favorecen la transmisión de información entre neuronas) y 20% de inhibidoras (que evitan que se transmita esa información).

Curiosamente, el objetivo inicial de los científicos de la UGR era estudiar cómo funciona el cerebro de los autistas, para lo que pretendían desarrollar un modelo matemático que permitiera analizar las conexiones neuronales de esta enfermedad.

Sin embargo, a medida que avanzaba su investigación pudieron demostrar matemáticamente y mediante simulaciones por ordenador la existencia en dicho sistema de un tipo de estado “vidrio de espín” que se corresponde con estados de actividad baja (Down) o actividad alta (UP) observados y descritos ampliamente en el córtex de los mamíferos, incluido el cerebro humano.

Los estados vidrios de espín (‘spin-glassstates’ en inglés) son sistemas magnéticos que han sido largamente descritos en los materiales magnéticos desordenados a baja temperatura y también aparecen en los modelos de redes neuronales artificiales.

 

Más información en la Universidad de Granada.

Sin Ciencia no hay futuro. Defiende la Ciencia Andaluza #CienciaAndaluza

Ciencia Andaluza: Nuevo equipo portátil de rayos X para analizar el patrimonio cultural

Ciencia Andaluza Rayos X
Ciencia Andaluza Rayos X

 

El Centro Nacional de Aceleradores, de la Universidad de Sevilla, ha puesto en marcha el primer equipo de microfluorescencia de rayos X confocal de España y el segundo del mundo dedicado al análisis no destructivo de cuadros y otros elementos del patrimonio histórico. Es un dispositivo portátil que permite distinguir in situ las capas pictóricas de una obra, así como entender mejor la técnica pictórica de su autor.

El desarrollo de técnicas no destructivas y no invasivas está presentando una gran evolución en los últimos años a la hora de estudiar obras de arte y el patrimonio cultural. Además, si los equipos son portátiles se pueden llevar estas técnicas a los propios museos, evitando el traslado de las obras a los laboratorios.

Ahora el Centro Nacional de Aceleradores, en Sevilla, ha diseñado un equipo µXRF-CONCHA, es decir, de microfluorescencia de rayos X confocal para el análisis del patrimonio cultural (Micro X-Ray Fluorescence Confocal for Cultural Heritage Analysis, en inglés), que obtiene datos sobre la composición química de una obra con la calidad e información propia de técnicas invasivas, pero sin la necesidad de tomar muestras.

 

Más información en la web del CNA de Sevilla

Defiende tu futuro. Defiende la Ciencia Andaluza #CienciaAndaluza

Foto:  Wikipedia