#Almería Científicos españoles y chinos analizan 50 agujeros negros supermasivos

BlackHole Lensing

By No machine-readable author provided. Alain r assumed (based on copyright claims). [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or CC BY-SA 2.5-2.0-1.0 (http://creativecommons.org/licenses/by-sa/2.5-2.0-1.0)], via Wikimedia Commons

 

El observatorio hispano-alemán de Calar Alto, el mayor observatorio astronómico de Europa continental, ha firmado un acuerdo con la Universidad de Pekín para el desarrollo, desde el telescopio de 2,2 metros, de un estudio intensivo de los agujeros negros supermasivos situados en la región central de las galaxias. Estas zonas constituyen los denomimados núcleos activos de galaxias y se hallan entre los objetos más energéticos que existen en el universo.

El proyecto, que empleará el 60% del tiempo del telescopio y se extenderá hasta finales de 2019 (con una posible renovación hasta 2021), situará al observatorio en la vanguardia del estudio de los núcleos activos de galaxias y contribuirá a dotar de estabilidad presupuestaria a Calar Alto.

“La Universidad de Pekín se interesó en el observatorio de Calar Alto por la calidad de su cielo y de sus proyectos –apunta Jesús Aceituno, director del observatorio–. Calar Alto se ha especializado en la última década en el desarrollo de grandes sondeos astronómicos, como CALIFA o ALHAMBRA, que están siendo fundamentales para la astrofísica moderna. Hoy nos encontramos con la experiencia suficiente para abordar este proyecto ambicioso y de largo recorrido, que nos ayudará a entender mejor estos gigantescos agujeros negros así como las implicaciones que tienen en cosmología”.

Los núcleos activos de galaxias (o AGN, por su acrónimo en inglés) pueden emitir de forma continuada más de cien veces la energía de todas las estrellas de la Vía Láctea. Su estructura consiste en un agujero negro, de hasta miles de millones de masas solares, rodeado de un disco de gas que lo alimenta y que, en su proceso de caída, libera gran cantidad de energía.
Aunque se conocen y estudian desde hace décadas, los núcleos activos presentan numerosas cuestiones aún no resueltas, entre ellas el proceso físico de caída de material hacia el agujero negro o la relación entre la evolución del mismo y la de su galaxia anfitriona.

El proyecto que se desarrollará en Calar Alto estudiará un tipo específico de núcleos activos, que muestran una tasa de acrecimiento, o de absorción de material del disco, especialmente elevada.

Núcleos activos como candelas para medir distancias

“Estamos empleando el telescopio de 2,2 metros de Calar Alto para desarrollar un estudio intensivo de una muestra de unos cincuenta agujeros negro supermasivos que nos permitirá determinar sus propiedades fundamentales, entre ellas su masa”, apunta Jian-Min Wang, investigador de la universidad de Pekín que encabeza el estudio.

“Esto nos permitirá abordar las cuestiones abiertas en el estudio de las galaxias activas –añade–, y comprobar si pueden servirnos de candelas estándar para medir distancias en el universo”.

El observatorio de Calar Alto incluye tres telescopios situados en la Sierra de Los Filabres, al norte de Almería. Es operado conjuntamente por el Instituto Max-Planck de Astronomía en Heidelberg, Alemania, y el Instituto de Astrofísica de Andalucía (CSIC) en Granada.

Fuente Agencia SINC.

 

#Almería La contaminación lumínica se podría doblar en pocos años si se mide mal

Contaminación Lumínica
Contaminación Lumínica

 

La preocupación por la contaminación lumínica surgió en el ámbito astronómico, por la pérdida de calidad del cielo que perjudica las observaciones y que ha provocado incluso el cierre de observatorios históricos, como el de Monte Wilson en Los Ángeles. Sin embargo, en la última década han proliferado estudios que relacionan el exceso de iluminación nocturna con problemas en nuestra salud y con perjuicios en los ecosistemas que, sumados al derroche energético, muestran la importancia de regular la contaminación lumínica.

Ahora, un estudio liderado por el Instituto de Astrofísica de Andalucía (IAA-CSIC) muestra que los sensores más comunes para monitorizar la contaminación lumínica en todo el mundo –Sky Quality Meter (SQM) y los satélites VIIRS y DMSP- tienen un limitación fundamental para trazar la evolución de la contaminación lumínica: son sensores ‘daltónicos’ y no ven en color. El trabajo se publica en la revista Monthly Notices of the Royal Astronomical Society.

“Aunque las imágenes de iluminación nocturna que estamos acostumbrados a ver muestran color, se trata de una interpretación artística de imágenes en blanco y negro”, apunta Alejandro Sánchez, investigador del IAA que encabeza el estudio. Así, el recientemente publicado Atlas Mundial de la Contaminación lumínica solo representa la punta del iceberg, como los autores ya reconocían en el artículo, ya que fue calibrado principalmente con este tipo de dispositivos”.

En el nuevo estudio se muestra cómo el sensor más popular para trazar la evolución de la contaminación lumínica desde tierra, el SQM, podría estar dando valores iguales para una ciudad iluminada con sodio y otra con LED blancos de 3000 kelvin cuando, en realidad, puede haber un 100% más de contaminación lumínica en el segundo caso (los kelvin son la medida empleada para medir la temperatura de color de los LED).

“Esto es muy importante porque nos hallamos en un momento crucial: en ciudades de todo el mundo se están sustituyendo las lámparas de sodio tradicionales por dispositivos LED, y vemos que en este caso es fundamental controlar el color ya que podemos tener la falsa sensación de estar reduciendo la contaminación lumínica cuando en realidad la estamos duplicando”, señala Alejandro Sánchez.

El estudio indica cómo el cambio a LED blancos puede llegar a contaminar lo mismo que las tradicionales lámparas de sodio, pero para ello es necesario bajar la potencia al menos a un 42% y no emitir luz directa por encima de la horizontal.

Gracias a las conclusiones de este estudio, ratificadas por un informe del Departamento de Energía de Estados Unidos publicado la pasada semana, los Ayuntamiento de Montreal y Quebec han decidido modificar su plan de alumbrado público, reduciendo a un tercio la intensidad de los nuevos LED, con el compromiso de no usar iluminación que supere los 2700 kelvin.

“La contaminación lumínica es un problema serio, que debe abordarse desde las agendas políticas. No solo por sus consecuencias sobre nuestra salud o los ecosistemas, sino porque solo en España supone un derroche de entre 655 y 1255 millones de euros anuales”, señala Sánchez (IAA-CSIC).

Más información en la web de la Agencia SINC

 

#Almería Científicos españoles y chinos analizan 50 agujeros negros supermasivos

Agujero Negro NASA
Agujero Negro NASA

El observatorio hispano-alemán de Calar Alto, el mayor observatorio astronómico de Europa continental, ha firmado un acuerdo con la Universidad de Pekín para el desarrollo, desde el telescopio de 2,2 metros, de un estudio intensivo de los agujeros negros supermasivos situados en la región central de las galaxias. Estas zonas constituyen los denomimados núcleos activos de galaxias y se hallan entre los objetos más energéticos que existen en el universo.

El proyecto, que empleará el 60% del tiempo del telescopio y se extenderá hasta finales de 2019 (con una posible renovación hasta 2021), situará al observatorio en la vanguardia del estudio de los núcleos activos de galaxias y contribuirá a dotar de estabilidad presupuestaria a Calar Alto.

“La Universidad de Pekín se interesó en el observatorio de Calar Alto por la calidad de su cielo y de sus proyectos –apunta Jesús Aceituno, director del observatorio–. Calar Alto se ha especializado en la última década en el desarrollo de grandes sondeos astronómicos, como CALIFA o ALHAMBRA, que están siendo fundamentales para la astrofísica moderna. Hoy nos encontramos con la experiencia suficiente para abordar este proyecto ambicioso y de largo recorrido, que nos ayudará a entender mejor estos gigantescos agujeros negros así como las implicaciones que tienen en cosmología”.

Los núcleos activos de galaxias (o AGN, por su acrónimo en inglés) pueden emitir de forma continuada más de cien veces la energía de todas las estrellas de la Vía Láctea. Su estructura consiste en un agujero negro, de hasta miles de millones de masas solares, rodeado de un disco de gas que lo alimenta y que, en su proceso de caída, libera gran cantidad de energía.

Aunque se conocen y estudian desde hace décadas, los núcleos activos presentan numerosas cuestiones aún no resueltas, entre ellas el proceso físico de caída de material hacia el agujero negro o la relación entre la evolución del mismo y la de su galaxia anfitriona.

El proyecto que se desarrollará en Calar Alto estudiará un tipo específico de núcleos activos, que muestran una tasa de acrecimiento, o de absorción de material del disco, especialmente elevada.

Núcleos activos como candelas para medir distancias

“Estamos empleando el telescopio de 2,2 metros de Calar Alto para desarrollar un estudio intensivo de una muestra de unos cincuenta agujeros negro supermasivos que nos permitirá determinar sus propiedades fundamentales, entre ellas su masa”, apunta Jian-Min Wang, investigador de la universidad de Pekín que encabeza el estudio.

“Esto nos permitirá abordar las cuestiones abiertas en el estudio de las galaxias activas –añade–, y comprobar si pueden servirnos de candelas estándar para medir distancias en el universo”.

El observatorio de Calar Alto incluye tres telescopios situados en la Sierra de Los Filabres, al norte de Almería. Es operado conjuntamente por el Instituto Max-Planck de Astronomía en Heidelberg, Alemania, y el Instituto de Astrofísica de Andalucía (CSIC) en Granada.

Fuente: Web de la Agencia SINC.

 

#Granada OCTOCAM, liderado por astrónomos del IAA, será el próximo instrumento del observatorio Gemini

Créditos: De Credit:Image: European Space Agency & NASAAcknowledgements:Project Investigators for the original Hubble data: K.D. Kuntz (GSFC), F. Bresolin (University of Hawaii), J. Trauger (JPL), J. Mould (NOAO), and Y.-H. Chu (University of Illinois, Urbana)Image processing: Davide De Martin (ESA/Hubble)CFHT image: Canada-France-Hawaii Telescope/J.-C. Cuillandre/CoelumNOAO image: George Jacoby, Bruce Bohannan, Mark Hanna/NOAO/AURA/NSF – http://www.spacetelescope.org/news/html/heic0602.html ([cdn.spacetelescope.org/archives/images/screen/heic0602a.jpg direct link])See also: http://hubblesite.org/newscenter/newsdesk/archive/releases/2006/10/image/a, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=36216331

Los telescopios gemelos del observatorio Gemini, con sus 8,1 metros de diámetro y su ubicación en ambos hemisferios (Chile y Hawái), disponen de un acceso privilegiado a todo el cielo. En 2014, Gemini realizó una llamada para estudios de viabilidad de futuros instrumentos que mantuvieran la excelencia del observatorio durante la próxima década. Entre los seleccionados se hallaba OCTOCAM, un ambicioso proyecto encabezado por investigadores del grupo HETH (High Energy Transients and their Hosts) del Instituto de Astrofísica de Andalucía (IAA-CSIC).

Tras dicho estudio, OCTOCAM participó en el concurso para la construcción del nuevo instrumento para el observatorio, en agosto de 2016. Tras una exhaustiva evaluación, el proyecto fue seleccionado para su construcción y financiado con un presupuesto de quince millones de dólares, en el marco de un contrato firmado la semana pasada.

“OCTOCAM se ha diseñado para revolucionar la investigación en múltiples campos de la astrofísica. Para ello, un amplio grupo internacional de investigadores ha seleccionado los casos científicos más punteros de cada rama, y eso se ha utilizado para definir las características técnicas que permitirán a OCTOCAM contribuir a responder a las grandes preguntas que nos plantea la astrofísica”, apunta Antonio de Ugarte Postigo, investigador del IAA-CSIC que lidera el proyecto.

OCTOCAM utilizará ocho detectores de última generación para observar simultáneamente en el óptico y en el infrarrojo, y alcanzará velocidades de lectura de decenas de milisegundos. Estas características, unidas a su excepcional sensibilidad, lo convierten en un instrumento sin igual hasta la fecha, capaz de multiplicar por ocho la potencia de un gran telescopio.

Aunque el instrumento se ha diseñado para satisfacer las necesidades de muchas áreas de investigación, OCTOCAM está optimizado para el estudio de objetos transitorios: eventos muy energéticos y distantes como las explosiones de rayos gamma o las supernovas. “La resolución temporal de OCTOCAM permitirá estudiar, a cámara lenta, la explosión de una estrella al final de su vida y la formación de un agujero negro”, explica Christina Thöne (IAA-CSIC), gestora de la parte española del proyecto.

OCTOCAM se instalará en el telescopio Gemini Sur, en Chile, y dará soporte al proyecto LSST (Large Synoptic Survey Telescope), un telescopio que detectará miles de objetos transitorios cada noche. Así, OCTOCAM aportará una visión privilegiada de los distintos tipos de supernovas, de sus estrellas progenitoras y de la física de la explosión; de la formación y evolución de las estrellas de neutrones; de las explosiones de rayos gamma, que permiten explorar el universo hasta la época de la formación de las primeras estrellas; o de los agujeros negros, tanto estelares como supermasivos.

OCTOCAM trabajará además en otros campos de la astrofísica: podrá identificar y caracterizar planetas en torno a otras estrellas mediante el método de los tránsitos, estudiar el interior de las estrellas analizando las oscilaciones de su superficie, trazar la historia del Sistema Solar estudiando objetos más allá de Neptuno, o estudiar la evolución química de las galaxias, entre otros.

El instrumento, que se entregará en 2022, será el primero liderado desde fuera de los miembros asociados a Gemini (EEUU, Canadá, Chile, Brasil y Argentina). Ha sido coordinado desde el Instituto de Astrofísica de Andalucía (IAA-CSIC) por Antonio de Ugarte Postigo y Christina Thöne, en colaboración con el Southwest Research Institute (SwRI, Texas), la universidad George Washington (GWU, Washington D.C.) y FRACTAL S.R.L. (Madrid). “Queremos que este trabajo sea un homenaje a nuestro compañero Javier Gorosabel, fallecido en 2015, que fue uno de los creadores del concepto de OCTOCAM”, concluye Antonio de Ugarte Postigo (IAA-CSIC).

ACERCA DEL OBSERVATORIO GEMINI

El Observatorio Gemini es una colaboración internacional con dos telescopios idénticos de ocho metros. El Telescopio Frederick C. Gillett Gemini se encuentra en Mauna Kea, Hawái (Gemini Norte) y el otro telescopio en Cerro Pachón en el centro de Chile (Gemini Sur). Juntos los telescopios gemelos proporcionan una cobertura completa sobre ambos hemisferios del cielo. Los telescopios incorporan tecnologías que permiten que los espejos grandes, relativamente delgados, bajo control activo, recojan y enfocen tanto la radiación visible como la infrarroja del espacio.

El Observatorio Gemini proporciona a las comunidades astronómicas de los siete países socios instalaciones astronómicas de vanguardia que asignan el tiempo de observación en proporción a la contribución de cada país. Además del apoyo financiero, cada país aporta también importantes recursos científicos y técnicos. Las agencias nacionales de investigación que forman la asociación Gemini incluyen: la Fundación Nacional de Ciencias (NSF), el Consejo de Ciencia y Tecnología del Reino Unido (STFC), el Consejo Nacional de Investigación del Canadá (CNRC), la Comisión Nacional de Investigación Científica y Tecnológica CONICYT), el Consejo Australiano de Investigación (ARC), el Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y el Consejo Nacional de Desarrollo Científico y Tecnológico CNPq. El observatorio es administrado por la Asociación de Universidades para la Investigación en Astronomía, Inc. (AURA) bajo un acuerdo de cooperación con la NSF. La NSF también sirve como agencia ejecutiva para la asociación internacional.

Más información en el IAA-CSIC.

 

#Málaga Tres jóvenes investigadores estudian la germinación y el crecimiento de plantas en la Luna

Ciencia Andaluza
Investigadores – Foto Universidad de Málaga

Nunca se ha sembrado una planta en la Luna. Hasta ahora. Y es que tres jóvenes investigadores malagueños han propuesto un experimento revolucionario para estudiar la germinación y el crecimiento de vida vegetal en gravedad lunar.

Se trata de ‘Green Moon Project’, una idea que emana de los estudiantes de la UMA Gonzalo Moncada, biólogo; y Julián Serrano, ingeniero de la Energía; junto a José María Ortega, que está terminando el grado de ingeniería Aeroespacial en la UCA; y que ha quedado entre los 15 finalistas del programa ‘Lab2Moon’, dentro de la competición ‘Google Lunar X Prize’, que, a finales de año, enviará la sonda lunar india HHK 1 con el experimento ganador, finalmente, logrado por el equipo italiano ‘Space4Life’, que presentó un escudo de cianobacterias para ver cómo interaccionaba con la radiación cósmica y solar procedente del espacio.

El prototipo ideado por los científicos malagueños fue seleccionado de entre 3.400 propuestas procedentes de todo el mundo para presentar su trabajo, junto a otros 25, ante un comité evaluador en la India hace unas semanas, consiguiendo posicionarse entre los 15 primeros y siendo los únicos representantes de nuestro país.

El experimento ‘Green Moon Project’ propone llevar semillas a la Luna para ver si es posible su supervivencia, y estudiar cómo afecta la gravedad lunar, seis veces menor que la terrestre, en el crecimiento de la planta y cómo estas realizan la fotosíntesis sin luz natural.

La hipótesis que estos jóvenes mantienen es que, a menor gravedad, mayor crecimiento, ya que el transporte de nutrientes por dentro del tallo hasta las hojas es más fácil; y el objetivo demostrar la posibilidad de que la luna sea una base de alimentación y permita, algún día, la supervivencia del ser humano, a través de su propia producción vegetal.

“Nunca antes se ha realizado ningún experimento de cómo sería la germinación de una planta en la Luna. Nosotros nos hemos inspirado en el proyecto ‘Moon Village’, de la Agencia Espacial Europea (ESA), el cual nos ha servido de guía e inspiración para la definición de nuestro concepto, la maduración de la idea y la construcción del prototipo”, explica el investigador José María Ortega.

Asesoramiento de la UMA

Para el diseño de este prototipo, estos tres científicos de 23 años, han contado con el asesoramiento de la Universidad de Málaga. En concreto, el Departamento de Biología Vegetal ha sido el responsable de ceder las semillas Arabidopsis Thaliana, que crecerán dentro de una cápsula que trata de asemejarse lo máximo posible al suelo lunar.

“Para ello empleamos simulante de regolito lunar JSC-1ª y realizamos la prueba de germinación de semillas de lentejas, que brotaron después de haber estado 48 horas a -16ºC en la Tierra. De esta forma garantizamos que, en caso de haber sido los seleccionados para ir a la Luna, las semillas habrían germinado correctamente una vez que la trampilla se hubiera activado al estar sobre su superficie”, aclara Ortega.

“Tres LEDs de colores azul, rojo y rojo lejano permitirían que dentro del prototipo diseñado pudiera darse esta germinación de las semillas y la posterior fotosíntesis gracias a esos colores dentro del espectro lumínico. Según lo estudiado, con ello conseguiríamos suplir todo el espectro proporcionado por el Sol y haríamos que el experimento fuera exitoso”, continúa.

Igualmente, la Escuela de Ingeniería Industrial de la UMA les ha apoyado económicamente y ha colaborado para realizar la estructura de la cápsula. Una verdadera obra de ingeniería construida con aluminio e impresos en 3D para evitar los adhesivos, que con las temperaturas extremas de la luna podrían contaminar la muestra.

También, desde el Departamento de Tecnología Electrónica de la Escuela Técnica Superior de Ingeniería de Telecomunicación han aportado su grano de arena con la programación de la placa Intel Edison, el ordenador de a bordo y su programación.

Asimismo, han contado con el apoyo de geólogos, biólogos, ingenieros industriales e ingenieros de telecomunicaciones de la Universidad, así como con el respaldo económico de la empresa malagueña que fabrica paneles solares para satélites y microsatélites: DHV Technology. El Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial (CSIC), la empresa InnoPlant, vinculada a la Universidad de Granada, e incluso, la Agencia Espacial Europea, han sido otros de los colaboradores.

Hacia una especie interplanetaria sostenible, ese es el futuro que proponen estos tres jóvenes investigadores malagueños que, aunque han estado casi a punto de llegar a la luna, tienen los pies muy en la tierra. Y pisan fuerte.

Más información en la Universidad de Málaga.

 

#Granada Se hallan unas “gemelas” de las galaxias primigenias que permiten estudiar las etapas iniciales de la formación galáctica

Evolucion Universo CMB Timeline300 no WMAP
By NASA, Ryan Kaldari, adaptation to Spanish: Luis Fernández García, wiping WMAP: Basquetteur [CC0], via Wikimedia Commons

Un equipo internacional de astrónomos ha descubierto una población de minúsculas galaxias recién nacidas a más de once mil millones de años luz de distancia, que arrojan nueva luz sobre las primeras etapas de formación de galaxias. Aunque raros, estos objetos revelan con un detalle sin precedentes las condiciones que existían en la época de formación de las primeras galaxias, formadas pocos cientos de millones de años después del Big Bang.
En astrofísica, mirar lejos equivale a mirar al pasado. De la misma manera que la luz del Sol tarda ocho minutos en alcanzarnos (y, por lo tanto, vemos el Sol cuando era ocho minutos más joven), si observamos a grandes distancias estaremos estudiando épocas pasadas. Y en las últimas décadas, los astrónomos han conseguido penetrar en lo que se conoce como “edades oscuras”, un período correspondiente a los primeros setecientos millones de años después del Big Bang y en el que las primeras galaxias, muy débiles, se hallaban envueltas en hidrógeno neutro, un gas que aumenta la opacidad del medio.
Precisamente, esa envoltura opaca ha impedido realizar estudios detallados de estas galaxias con los observatorios actuales y, como resultado, el nacimiento y las primeras fases del crecimiento de las galaxias no han podido ser estudiadas en detalle.
Para identificar y estudiar las propiedades de estas galaxias primigenias, un equipo internacional de astrónomos ha adoptado un enfoque diferente. El equipo presenta el descubrimiento de galaxias nacientes observadas en un momento cósmico posterior, solo mil millones de años después del final de las edades oscuras, cuando el universo contaba con un 5% de su edad actual.
Al hallarse más próximas y en un entorno limpio de la “niebla” circundante, estas galaxias son más fáciles de estudiar en detalle. “Por primera vez, podemos observar una población de galaxias recién nacidas extremadamente jóvenes, que presentan todas las propiedades que se espera sean ubicuas en galaxias normales en tiempos mucho más antiguos”, indica Ricardo Amorín (INAF/Universidad de Cambridge), investigador que encabeza el estudio.

Los datos obtenidos revelan que las galaxias son muy ricas en gas ionizado, “con muy pocas cantidades de polvo y elementos pesados, como el carbono y el oxígeno, que son liberados por estrellas masivas y calientes de corta vida”, señala Enrique Pérez Montero, investigador del Instituto de Astrofísica de Andalucía (IAA-CSIC) que participa en la investigación.

Estas estrellas serían las responsables de ionizar el gas circundante, y quizá también del fin de las edades oscuras: las estrellas masivas terminan su vida en explosiones de supernova, que producen grandes flujos de gas que, por un lado, “contaminaron” el universo con los elementos pesados formados en sus núcleos y, por otro, desplazaron el hidrógeno neutro y fueron creando halos ya transparentes.

Así, este estudio, que ha analizado más de dos mil galaxias y ha hallado diez de estas galaxias primigenias, ha capturado lo que parece ser uno de los primeros episodios masivos de formación estelar del universo. Estas galaxias son unas treinta veces más pequeñas y unas cien veces menos masivas que la Vía Láctea, con formas compactas e irregulares que en algunos casos se asemejan a renacuajos y pares de galaxias en proceso de fusión.

El hallazgo, publicado en la revista Nature Astronomy, ha sido posible gracias a un gran esfuerzo de observación, coordinado desde el Sondeo Ultraprofundo VIMOS desarrollado en el Very Large Telescope (VLT/ESO), que también incluye imágenes obtenidas por telescopio espacial Hubble (NASA/ESA).

Más información en la web del IAA-CSIC

#Granada Científicos sugieren una revisión al origen de la materia oscura

CL0024+17
By NASA, ESA, M.J. Jee and H. Ford (Johns Hopkins University) [Public domain], via Wikimedia Commons

Imagen compuesta del cúmulo de galaxias CL0024+17 tomada por el telescopio espacial Hubble muestra la creación de un efecto de lente gravitacional. Se supone que este efecto se debe, en gran parte, a la interacción gravitatoria con la materia oscura.

 

Un nuevo estudio en el que participa la UGR sugiere que las ondas gravitacionales detectadas por el experimento LIGO provenían de agujeros negros generados en el colapso de estrellas y no en el origen del Universo

La naturaleza de la materia oscura, que constituye el 85% de la masa total del Universo, sigue siendo uno de los grandes misterios sin resolver de la ciencia actual. La falta de evidencias experimentales que permitan identificarla con alguna de las nuevas partículas elementales predichas teóricamente, junto al reciente descubrimiento de ondas gravitacionales procedentes de dos agujeros negros (de masas unas 30 veces la del Sol) por el observatorio LIGO (Laser Interferometer Gravitational-Wave Observatory), han renovado el interés por la posibilidad de que la materia oscura esté formada por agujeros negros primordiales de entre 10 y 1000 veces la masa del Sol.

Los agujeros negros primordiales, que se habrían originado en fluctuaciones de alta densidad de la materia durante los momentos iniciales del Universo, son muy interesantes. A diferencia de los que se forman a partir de estrellas, cuya abundancia y masa están limitadas por los modelos de formación y evolución estelar, los agujeros negros primordiales podrían existir en un amplio rango de masas y abundancias. Estos objetos habitarían en los halos de las galaxias y el encuentro y fusión ocasional de dos de ellos, con masas de unas 30 veces la del Sol, habría dado lugar a las ondas gravitacionales detectadas por LIGO.

“Efecto microlente”
Si existiera una cantidad apreciable de agujeros negros en los halos de las galaxias, alguno de ellos podría interponerse entre la trayectoria de la luz de un cuásar distante y la Tierra. Por su gran masa, la gravedad concentraría los rayos de luz y provocaría un aumento en el brillo del cuásar. Este efecto, conocido como “efecto microlente”, crece con la masa del agujero negro y su probabilidad aumenta según la abundancia de los mismos. Es decir, aunque no pudieran verse los agujeros negros, serían detectados por el aumento del brillo de los cuásares.

Bajo esta premisa, un equipo de científicos, en el que se encuentran dos investigadores de la Universidad de Granada (UGR), ha utilizado el efecto microlente en cuásares para estimar la cantidad de agujeros negros primordiales de masa intermedia que hay en las galaxias.

En la investigación han participado el profesor del departamento de Física Teórica y del Cosmos de la UGR Jorge Jiménez Vicente, y un estudiante de Grado en Física, José Calderón-Infante, gracias a una beca de iniciación a la investigación del Plan Propio de la UGR.

El estudio, liderado por el investigador del Instituto de Astrofísica de Canarias (IAC) y la Universidad de La Laguna (ULL) Evencio Mediavilla Gradolph, indica que las estrellas normales como el Sol son, muy probablemente, las responsables del efecto microlente, descartando la existencia de una gran población de agujeros negros primordiales de masa intermedia.
Continue reading “#Granada Científicos sugieren una revisión al origen de la materia oscura”

#Granada Sobreabundancia de azufre alrededor de embriones de estrellas

IRAM 30m Sierra Nevada - sky
By JuanJaén (http://www.flickr.com/photos/juanjaen/868885706/) [CC BY-SA 2.0], via Wikimedia Commons

Utilizando el radiotelescopio de Pico de Veleta (Granada), astrónomos españoles y franceses han estudiado dos protoestrellas muy jóvenes que se albergan en la nube molecular Bernard 1b. Específicamente, han analizado la química que se presenta en sus regiones de gas más cercanas. Puesto que estas regiones son las precursoras de los discos que finalmente dan lugar a los planetas, el estudio resulta importante para la geología planetaria y la astrobiología.

Las protoestrellas son estrellas que aún no han llegado a su edad madura. Durante esta etapa, pueden distinguirse distintas edades. Las más jóvenes, las ‘estrellas bebés’, se denominan protoestrellas Clase 0. Estas no son visibles porque están aún dentro de la nube materna, pero se detectan a través de las eyecciones de materia a alta velocidad (flujos bipolares) que se producen en este periodo.

Recientemente se han encontrado protoestrellas aún más jóvenes, embriones de estrellas, que reciben el nombre de ‘primer corazón hidrostático’. Esta etapa comienza con la primera eyección del flujo bipolar (el primer ‘latido’ de la estrella), y es muy corta, apenas unos pocos miles de años.

El estudio de protoestrellas en la etapa de ‘primer corazón hidrostático’ es esencial para comprobar la teoría de formación estelar. Sin embargo, debido a su brevedad, son extremadamente difíciles de identificar. Una de las estrellas analizadas por el equipo hispano-francés en la nube molecular Bernard 1b, se encuentra en etapa de ‘primer corazón hidrostático’, mientras que la otra es una protoestrella de Clase 0.

El objetivo inicial del estudio, publicado en Astronomy & Astrophysics, era determinar el grado de ionización y la abundancia de carbono, oxígeno, nitrógeno y azufre en las regiones de gas más cercanas a las dos protoestrellas jóvenes (B1b-S y B1b-N).

Continue reading “#Granada Sobreabundancia de azufre alrededor de embriones de estrellas”

Visita del Cometa 45P/Honda-Mrkos-Pajdusakova 11022017

En estos días tenemos  en nuestros cielos el cometa 45P/Honda-Mrkos-Pajdusakova que nos  visita cada 5 años y poco en su vuelta al Sol.

Este cometa no visible a simple vista, fue descubierto por una aficionado Japones como nosotros: Minoura Honda.

Este año localizado ya desde Noviembre con una magnitud de 16  se ha ido acercando a la Tierra alcanzando una magnitud cercana a 7  a principios de año. El día 11 de Febrero será el día que más cerca este de nosotros, pero hasta Marzo seguirá siendo visible aunque rápidamente ira perdiendo su intensidad y su cola. Lástimas que coincida con Luna Llena (aunque eclipsada penumbral) y que el cometa esté reduciendo su actividad después de visitar al Sol.

Ese día se encontrará en Hércules y da la casualidad que en Conjunción con NGC621o, la Nebulosa planetaria  Tortuga, a tan sólo 0,4 grados sobre las 2:57 hora peninsular española (1:57 UTC) en estas coordenadas 16 h 45.82m, 24º 06,7′ según el OAN (Observatorio Astronómico Nacional) .

Será interesante verlo desde la 2:30 de la mañana que ya Hércules ha salido aunque aún estará bajo y la Luna estará casi en en Cenit. Cuanto más cerca del amanecer la Luna molestará menos ya que estará hacia el oeste ocultándose y Hércules seguirá por el Sur-Este más alto.

45p-honda-mrkos-pajdusakova-mpc-84320

Mas información en Cometografía.

Buenos Cielos.

Fuente: Agrupación Astronómica Jerezana Magallanes

#Cádiz #Jerez Un Punto Azul: Programa nº 16 del 2 de Febrero de 2017 temporada 2016-2017 #astronomía

Emisión del programa nº16 de la nueva temporada 2016/2017 de Un Punto Azul el día 26 de Enero 2017, de las 21:00 horas a las 22:00 hora local este día, en Frontera Radio y ahora también en Onda Jerez Radio,  Burbuja ModuladaLa voz del Sur y  EMA-Rtv de Andalucía, además de Ivoox y en directo por Internet.

Un Punto Azul 2016/2017 nº 16 – 2 Febrero 2017
Minuto de Inicio Contenido Colaboradores
0:00:00 Presentación Alfonso Saborido
0:03:10 Saludos a Oyentes: Juan Jose y Juan Manuel Alfonso Saborido
0:05:25 Día de la Candelaria, ecuador del Invierno Alfonso Saborido
0:08:33 ¿Astronomía de Salón o de Campo? David Chacón
0:12:59 Noticias Ciencia Andaluza Alfonso Saborido
0:22:00 Libro Universo Gaseoso Manuel Jiménez del Barco
0:27:36 Universo Gaseoso: Planetas Extrasolares Manuel Jiménez del Barco
1:02:03  Publico escuchante y participante Miguel Soto                               José Luis Espi