#Jaén Residuos del olivo para mejorar la flora intestinal

Ciencia Andaluza
Olivo

Miembros del grupo Ingeniería Química y Ambiental de la Universidad de Jaén, junto a investigadores de la Universidad de Santiago de Compostela y del Laboratorio Nacional de Energía y Geología de Lisboa han aislado sustancias de restos del olivar beneficiosas para el organismo. Los compuestos obtenidos promueven la proliferación de las bacterias causantes de que la flora intestinal cumpla correctamente su función en la asimilación de nutrientes.

El método propuesto por los investigadores contribuye al aprovechamiento de los residuos y, por tanto, a la disminución de la contaminación que genera su eliminación por los métodos tradicionales. En el artículo ‘Bifidobacterial growth stimulation by oligosaccharides generated from olive tree pruning biomass’ publicado en la revista Carbohydrate Polymers detallan estas nuevas posibilidades en el contexto de una refinería basada en los residuos sólidos del olivar y la reutilización de los subproductos obtenidos como prebióticos.

El trabajo de esta investigación abre las puertas a la introducción de este tipo de sustancias en una amplia gama de productos farmacéuticos, cosméticos y alimentarios que promuevan el desarrollo bacteriano intestinal.

El grupo de investigación Ingeniería Química y Ambiental se fundamenta en la biorrefinería, es decir, en el aprovechamiento exhaustivo de los residuos de cultivos. “Queremos conseguir productos útiles para el ser humano a partir de lo que hasta hace poco se consideraba basura. A través de este estudio, aprovechamos aún más los subproductos que se eliminan en la generación de biocombustible a partir del olivar con los se puede conseguir un beneficio directo para la salud”, indica a la Fundación Descubre el investigador Eulogio Castro de la Universidad de Jaén, uno de los autores del artículo.

Combustibles y digestión

El estudio parte del aprovechamiento de los restos de poda para conseguir bioetanol, un sustituto de la gasolina. El procedimiento consiste en el tratamiento de estos residuos de manera que se obtienen dos tipos de compuestos que contienen azúcares. La celulosa, por un lado, de la que se consigue la glucosa que se transforma en el etanol, usado como biocombustible. Por otro, la hemicelulosa, un compuesto que también forma parte de la pared celular vegetal, a partir de la que se extraen oligosacáridos, que pueden usarse como prebióticos, sustancias que ayudan a las bacterias del intestino a la digestión.
En un primer momento, los residuos del campo son triturados y tamizados, al mismo tiempo que se someten a un lavado con agua caliente a presión. Una vez que se separa el producto se consigue una parte sólida, de la que se obtiene el combustible, y una parte líquida en la que se encuentran disueltos los azúcares hemicelulósicos, entre los que se encuentran los oligosacáridos. Existen muchos tipos, pero son los más pequeños los que se utilizan en el cultivo de bacterias para analizar, posteriormente, su acción beneficiosa, como también ha quedado demostrado en este estudio.

Más información en la fuene de la noticia Remedios Valseca / Fundación Descubre

 

#Jaén Bacterias para reciclar plata en aguas contaminadas

Plata
Plata

Investigadores del grupo ‘Ingeniería Química y Ambiental’ de la Universidad de Jaén han demostrado la capacidad de una bacteria para eliminar metales pesados, como la plata o el plomo, de las aguas residuales. A partir de los resultados de este estudio podrán elaborarse biofiltros basados en estos microorganismos que contribuyan a la depuración de aguas contaminadas.

El uso de esta bacteria como agente biorremediador no genera lodos residuales, por lo que no es necesario su tratamiento en las plantas de depuración. Esto conlleva una reducción del coste añadido en la recuperación de las aguas, ya que los residuos obtenidos por métodos físico-químicos con agua que contiene metales pesados no pueden reutilizarse.

Al mismo tiempo, este microorganismo produce cloruro de plata, muy extendido como agente antimicrobiano. Este compuesto es usado en biosensores y tiene una gran actividad antiviral y antitumoral. Por tanto, la bacteria podría ser una fuente de este recurso demandado por la industria biomédica y nanotecnológica.

Para el desarrollo del proyecto, los expertos partieron del estudio de 48 microorganismos entre hongos, levaduras y bacterias, hasta llegar a la especie más idónea para sus propósitos. Se trata de identificar al que asimile más cantidad de plata y que no suponga un riesgo añadido en las aguas tratadas. En el artículo ‘Biosorption of Ag(I) from aqueous solutions by Klebsiella sp. 3S1’ publicado en la revista Journal of Hazardous Materials describen el comportamiento de esta bacteria, Klebsiella sp. 3S1, en la asimilación de plata según sus observaciones en ensayos de laboratorio.

La identificación del microorganismo tiene fines ambientales. “A pesar de la normativa actual, muy restrictiva en el vertido de metales pesados, se sigue observando la presencia de estas sustancias en el agua. Además, la existencia de plata en las aguas y su eliminación ha sido un tema poco estudiado hasta el momento. Nos hemos sorprendido al descubrir el enorme potencial de esta bacteria para el tratamiento de aguas que la convertirán en una excelente aliada contra la contaminación”, indica a la Fundación Descubre el investigador de la Universidad de Jaén Antonio Jesús Muñoz, autor del artículo.

Más información en la fuente de la noticia: Remedios Valseca / Fundación Descubre

#Córdoba La química saca los colores a la escultura clásica romana

SevillaMusArqS17 01

By No machine-readable author provided. Lobillo assumed (based on copyright claims). [Public domain], via Wikimedia Commons

A simple vista, las grandes estatuas romanas que llenan las calles de roma, los museos arqueológicos de media Europa y siguen apareciendo en los yacimientos arqueológicos del territorio que ocupó el antiguo Imperio son de un blanco casi inmaculado. Así llevan siglos presentándose ante los ojos de quienes han querido mirarlas con más o menos pasión. Los artistas renacentistas las idolatraron y considerado un ejemplo de virtuosismo artístico. El arte clásico fue considerado la esencia del genio humano. Miguel Ángel creó su David y su Piedad imitando a los escultores griegos y romanos, tallando en la inmaculada piedra dos de las grandes obras de la Historia Universal del Arte. Se le olvidada, sin embargo, un detalle. Las estatuas romanas no fueron blancas en su origen, estaban laboriosamente pintadas de vivos colores aunque ni los ojos de los renacentistas ni de cualquier persona del año 2017 sea capaz de verlos.

Así lo han sospechado durante décadas los arqueólogos y así lo ha demostrado recientemente la ciencia. Uno de los últimos trabajos en este sentido ha sido el publicado por un equipo de investigación de la Universidad de Córdoba en el Instituto de Química Fina y Nanoquímica integrado por los profesores José Rafael Ruiz Arrebola y César Jménez Sanchidrián y los investigadores Daniel Cosano Hidalgo y Laura Dara Mateos Luque en la revista Microchemical Journal, en la que constatan la existencia de pigmentos de amarillo, azul y rojo en tres grandes estatuas aparecidas en el yacimiento arqueológico de Torreparedones (Baena, Córdoba), cuyas excavaciones dirige el profesor Carlos Márquez.

Para sacar los colores a las esculturas, el equipo de la UCO, perteneciente al Departamento de Química Orgánica, ha recurrido a la espectrometría Raman, consistente en irradiar la muestra con un láser y medir la luz dispersada, correlacionando el número de onda de dicha luz dispersada con diferentes enlaces químicos que hacen posible determinar la naturaleza del pigmento empleado en la pintura.

Según detallan en el artículo, para conseguir conocer los colores concretos que adornaron las vestimentas de los emperadores Augusto y Claudio y la que posiblemente representara a Livia, esposa del primero de ellos, los investigadores de la UCO calibraron el espectrómetro de acuerdo con los materiales que se pensaba que eran utilizados para colorear este tipo de estatuas. Tras someter las tres esculturas a este análisis, los investigadores concluyeron que los artistas de la Bética emplearon el oxihidróxido de hierro (goethita) para conseguir el amarillo, el óxido de hierro (hematites) para el rojo y el “azul egipcio”, un pigmento conocido desde la antigüedad, sintetizado a base de arena silícea, calcita y cobre.

El virtuosismo de aquellos antiguos pintores de estatuas no se limitó a emplear los colores planos, sino que los mezclaron con carbonato y fosfato cálcico y sulfatos para matizarlos, logrando diferentes tonalidades y dotando a sus esculturas de una profundidad, que, si se hubieran conservado, probablemente hubieran impresionado como hizo todo su arte a los renacentistas.

Más información en la Universidad de Córdoba.

#Cádiz Bebidas destiladas a partir de energía ultrasonido

Brandy solera reseva
By Xemenendura (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

Investigadores de la Universidad de Cádiz han desarrollado un sistema, basado en la aplicación de energía de ultrasonidos, que acelera el proceso de envejecimiento de bebidas espirituosas o destiladas. De esta forma, reduce a 3 días un proceso que puede durar 2 años, con los procedimientos tradicionales.

El proceso de envejecimiento hace referencia al tiempo que es necesario que una bebida se mantenga en barrica o en un barril de madera para que se conserven y potencien todas sus cualidades organolépticas, de color, sabor o textura por la extracción de compuestos de la madera.

Como explica a la Fundación Descubre la investigadora del departamento de Química Analítica de la Universidad de Cádiz María de Valme García Moreno, las bebidas con las que se está trabajando son aquellas cuyo contenido alcohólico procede de la destilación de materias primas agrícolas (uva, cereales, frutos secos, remolacha, caña o fruta). Concretamente, son productos como el brandy, el whisky, el ron, la ginebra, el vodka o los licores, entre otros.

La principal novedad de este trabajo, publicado en la revista Ultrasonics Sonochemistry con  el título ‘Study of a laboratory-scaled new method for the accelerated continuous ageing of wine spirits by applying ultrasound energy’, consiste en obtener una bebida en 3 días que si hubiera sufrido un proceso natural de envejecimiento en barrica hubiera durado 2 años.

Para desarrollar este método, los científicos han utilizado un recipiente donde se coloca la bebida destilada. Con una bomba de infusión se mueve el producto destilado en un tubo lleno de pequeñas virutas de madera. El alcohol circula por ese tubo y ahí se le aplica energía de ultrasonidos.

Más información en la fuente de la noticia: Rosario Marín / Fundación Descubre

 

Ciencia Andaluza: El diésel se enriquece con aditivos obtenidos por catalizadores sólidos menos contaminantes

 

Ciencia Andaluza
Diesel

 

Cuando alcancemos la mitad de este siglo, se prevé que en los países desarrollados se producirán 14 billones de litros de biodiesel al año. La cifra, calculada sobre la idea del agotamiento de los combustibles fósiles y las políticas de fomento de energías alternativas, hace pensar que para entonces se habrá avanzado tanto en el diseño de motores adecuados para el nuevo combustible como en la producción de biodiesel de calidad, algo imprescindible para ser realmente competitivo, así como en la valorización y gestión del principal residuo que ocasiona su producción: la glicerina. Y en ello están ingenieros y químicos de medio mundo. Entre ellos, el equipo de investigación FQM162, al que pertenece la catedrática de Química Orgánica de la Universidad de Córdoba, Felipa Mª Bautista, que acaba de encontrar un catalizador que permite dar un nuevo paso en los dos últimos aspectos señalados.

Concretamente, y según detallan en un artículo publicado en la revista Applied Catalysis firmado por el equipo de Bautista y el grupo FQM346, que dirige el profesor César Jiménez-Sanchidrián, el empleo de sílices combinadas con grupos sulfónicos para la transformación de la glicerina en sus correspondientes éteres, al reaccionar con el alcohol t-butílico, es considerablemente más eficaz y ventajoso, desde el punto de vista medioambiental, que el empleo de ácidos minerales. Y lo es por dos motivos fundamentales. El primero porque al ser un catalizador sólido, al final de la reacción, puede ser filtrado con facilidad y reutilizado en nuevas reacciones, y el segundo porque se obtiene un mayor rendimiento, lo que en química orgánica significa que a partir de una molécula de glicerina se consigue obtener más cantidad de éteres. De ellos, los di- y triéteres son los empleados como aditivos con los que enriquecer el diesel-biodiesel de forma que se obtenga un producto realmente competitivo de más fácil combustión y de menor viscosidad. Concretamente, según el trabajo reseñado en Applied Catalysis, con el catalizador de sílice sulfonada de la Universidad de Córdoba se consigue un rendimiento del 30% en dichos éteres frente al 20% de sus homólogos más populares, entre los que se encuentra uno de los catalizadores ácidos de referencia, la resina comercial, amberlita-15, que exhibe, además, una menor estabilidad térmica.

 

Para más información, consulte la fuente de la noticia en la Universidad de Córdoba.

 

Sin Ciencia no hay futuro. Defiende la Ciencia Andaluza #CienciaAndaluza

Ciencia Andaluza: Obtienen bioplásticos más absorbentes a partir de la goma de un arbusto y la clara de huevo

Ciencia Andaluza
Tragacanto – Wikipedia

Investigadores de las Universidades de Sevilla y Huelva han obtenido un bioplástico a partir de la mezcla de un compuesto derivado de un arbusto denominado tragacanto y la clara de huevo. El nuevo material, con potenciales aplicaciones en el sector de la industria alimentaria, consigue un 100% más de absorción que los envases actuales y, por tanto, es más efectivo al aumentar la vida útil de frutas y verduras, ya que impide el deterioro precoz de los productos provocado por la acción del agua.

A estas ventajas se suma que el plástico creado es más respetuoso con el medio ambiente al ser biodegradable y proceder, en parte, de subproductos agrícolas. Los investigadores han demostrado que las propiedades mecánicas se mantienen intactas al incluir la goma de tragacanto en la formulación y mejora su capacidad de reciclado en comparación con los plásticos sintéticos de polietileno derivados de hidrocarburos.

“Las cualidades de la proteína de la clara del huevo como absorbente en bioplásticos ya han sido demostradas en investigaciones anteriores, pero en este estudio hemos podido comprobar que unida al tragacanto aumenta sus propiedades de manera potencial”, indica a la Fundación Descubre Mª Luisa López Castejón, del Grupo de Investigación Tecnología y Diseño de Productos Multicomponentes de la US y coautora del artículo ‘Influence of tragacanth gum in egg white based bioplastics: Thermomechanical and water uptake properties’ publicado en la revista Carbohydrate Polymers.

Más información en la Universidad de Sevilla

Sin Ciencia no hay futuro. Defiende la Ciencia Andaluza #CienciaAndaluza

Ciencia Andaluza: Descubren que el gas que provoca el olor a ‘huevo podrido’ en las alcantarillas es beneficioso a nivel celular

Ciencia Andaluza
Ciencia Andaluza

Científicos de la Universidad de Granada han demostrado por primera vez que el sulfuro de hidrógeno, también conocido como el ‘gas de las cloacas’ por el olor a huevo podrido que provoca en las aguas residuales estancadas, es muy beneficioso a nivel fisiológico, porque ayuda a las células a producir energía.

Los investigadores, pertenecientes a la Universidad de Granada, laboratorios Abbott y al Centro de Investigación Biomédica (Instituto de Biotecnología), han demostrado que en ratones y humanos el sulfuro de hidrógeno que producen las propias células es utilizado por una enzima mitocondrial llamada sulfuroquinona:oxidoreductasa, la cual participa en la producción de energía de las células de cada tejido.

Como explica el autor principal de este trabajo, Luis Carlos López García, en los seres humanos y otros mamíferos, el sulfuro de hidrógeno es un gas tóxico que puede producir la muerte del individuo a altas concentraciones.

 

Más información en la Universidad de Granada.

Sin Ciencia no hay futuro. Defiende la Ciencia Andaluza #CienciaAndaluza

Foto Pixabay

Ciencia Andaluza: documental producido en la US ha sido seleccionado como finalista en la XXVIII bienal de Cine Científico

Ciencia Andaluza - Casa Encalada
Ciencia Andaluza – Casa Encalada

El documental Caleros, producido por la Facultad de Geografía e Historia de la Universidad de Sevilla, ha sido seleccionado como finalista en la XXVIII bienal de Cine Científico de Ronda 2016, en la categoría de Documental Científico, uno de los certámenes más prestigiosos de este género.

La obra tiene guión del profesor de la US Javier Navarro –en la actualidad decano del citado centro– y el responsable de la Realización es Óscar Torres, miembro del Personal de Administración y Servicios de la US, adscrito a la unidad de Medios Audiovisuales de la Facultad de Geografía e Historia.

Al concurso han concurrido 124 obras y un jurado internacional, compuesto por 18 expertos en diferentes campos de las ciencias y el audiovisual científico, ha seleccionado 35 obras, que son las finalistas que competirán por los premios y reconocimiento de esta Bienal. Las obras ganadoras se conocerán el 2 de diciembre de 2016 en Ronda durante la ceremonia de clausura.

 

Más información en la Universidad de Sevilla.

 

Sin Ciencia no hay futuro. Defiende la Ciencia Andaluza #CienciaAndaluza

Fotografía: Pixabay.

 

Ciencia Andaluza: El 3,5 por ciento de los depósitos mundiales de metano podrían fundirse antes del año 2100 debido al cambio climático

Ciencia Andaluza: Metano - Wikipedia
Ciencia Andaluza: Metano – Wikipedia

Un equipo formado por investigadores del Instituto Andaluz de Ciencias de la Tierra(IACT) (CSIC-Universidad de Granada) y la Universidad de Cambridge ha demostrado que el 3,5 por ciento de los depósitos mundiales de hidrato de metano (equivalente a unos 60.000 millones de toneladas de carbono) podrían empezar a fundirse antes del año 2100 aproximadamente, debido al cambio climático y el calentamiento de las aguas oceánicas, un hecho que provocaría que se vertieran a la atmósfera toneladas de este potente gas invernadero.

Esta investigación, que hoy publica la prestigiosa revista Nature Communications, ha demostrado mediante simulaciones que, además de los mecanismos ya conocidos, otro mecanismo hasta ahora ignorado, la ósmosis (difusión que tiene lugar entre dos líquidos o gases capaces de mezclarse a través de un tabique o membrana semipermeable), puede tener un rol clave en este acontecimiento.

 

Más información en http://www.nature.com/articles/ncomms13266 y en la Fundación Descubre

Sin Ciencia no hay futuro. Defiende la Ciencia Andaluza #CienciaAndaluza

 

Ciencia Andaluza: Una herramienta policial mejora la seguridad laboral en gasolineras y plantas solares

Ciencia Andaluza: Foto Pixabay
Ciencia Andaluza: Foto Pixabay

En el control de los aeropuertos, un policía puede acercarse con un pequeño sensor a cualquier pasajero y pasárselo por el reloj o la ropa. El gesto puede parecer absurdo, pero no es vacuo. El dispositivo está conectado a un sistema, llamado espectrómetro de movilidad iónica, y es capaz de encontrar rastros de explosivos o drogas que hayan quedado dispersos en la indumentaria del viajero sospechoso. Por medio de ella, se puede saber si se ha empleado un explosivo en un lugar o si existe una amenaza de atentado o ataque por parte de algún individuo. También facilita la detección de estupefacientes. “Es como un perro policía, pero con los beneficios de que no enferma”, explica Lourdes Arce, profesora del Departamento de Química Analítica de la UCO y responsable de la investigación.

 

Esta tecnología puede resultar ahora también útil en otros ámbitos y la Universidad de Córdoba (UCO) la ha validado para la detección de gases como el benceno o el tolueno, potencialmente cancerígenos, que podrían afectar a la salud de las personas que trabajan en lugares como estaciones de servicio.

Más información en la Universidad de Córdoba

 

Defiende tu futuro. Defiende la Ciencia Andaluza #CienciaAndaluza